پیش بینی شوری خاک با روش رگرسیون چند متغیره بر مبنای شاخص‌های استخراج شده از تصاویر لندست 8 (مطالعه موردی: ارومیه)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 مدل سازی شبکه های عصبی، آبیاری و سازه های آبی

چکیده

پایش و مدیریت شوری، یکی از مهم‌ترین مسائل کشاورزی به‌خصوص در مناطق خشک و نیمه‌خشک است. به‌منظور دستیابی به این هدف، بهره‌گیری از ابزارهای نوین مانند سنجش از دور و GIS اجتناب ناپذیر است. بررسی روابط بین پارامترهای مختلف خاک با داده‌های ماهواره‌ای، گامی مؤثر در پیش‌بینی هدایت الکتریکی عصاره اشباع خاک است. در این پژوهش با استفاده از روش‌ رگرسیون چند متغیره بر اساس روابط بین مؤلفه‌های توپوگرافیک با شاخص‌های استخراج شده از تصاویر ماهواره‌ای سنجنده لندست 8، پیش‌بینی هدایت الکتریکی عصاره اشباع خاک در دشت ارومیه مورد بررسی قرار گرفت. بدین منظـور ابتـدا از عمق 0-30 سانتی‌متری خـاک سـطحی،40 نمونه در منطقة مطالعاتی برداشت و در آزمایشگاه مقادیر EC مربوط بـه هـر نمونه اندازه‌گیری گردید. پس از انجام پردازش‌های لازم بر روی تصاویر ماهواره‌ای، با تعیین نقاط زمینی بر روی تصاویر، ارزش پیکسل‌های نظیر نقاط زمینی در باندهای مختلف استخراج گردید. در این پژوهش، داده‌ها به دو سری تقسیم شدند؛ سری آموزشی (80% داده‌ها)، سری ارزیابی (20% داده‌ها). رابطة بین داده‌های ماهواره‌ای و نتایج حاصل از آزمـایش-هـای خـاک منطقه با استفاده از روش‌ رگرسیون چند متغیرة خطی استخراج و دقت مدل‌ با استفاده از فاکتورهایی نظیـر خطای معیار برآورد، ضریب تعیین تعدیل شده، ضریب دوربین-واتسون و ضریب همبستگی مورد ارزیابی قرار گرفت. نتایج پژوهش بیان‌گر ارائه مدلی با ضریب همبستگی 3/70 درصد، خطای معیار برآورد 03/10 درصد، ضریب تعیین تعدیل شده 8/61 درصد و ضریب دوربین-واتسون 709/1 می‌باشد. در نهایت مدل بر روی داده‌های آزمون اعمال و برای ارزیابی از مقادیر پارامترهای RMSE، GMER و R2 استفاده شد که به ترتیب برابر 354/0، 867/0 و 82/63 % محاسبه گردیدند، که نتایج نشان از کارآیی و دقت خوب مدل در پیش‌بینی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of soil salinity using multivariable regression on the basis of extracted indices from Landsat 8 satellite (Case study: Urmia)

نویسنده [English]

  • Nasrin Azad 1
چکیده [English]

Managing and monitoring of salinity is one of the most important affair in agriculture, especially in arid and semi-arid area. For this purpose we have to use new technology like remote sensing and GIS. The relationship between soil parameters with satellite data is an effective step for predicting soil salinity. In this study we use multivariable regression based on relationship between topographical properties and extracted indices from Landsat 8 satellite for predicting soil salinity in Urmia. For predicting soil salinity, samples of 40 points from 0-30 cm soil depth were taken. Electrical conductivity from soil saturation extract (ECe) was measured. After performing the necessary processing on satellite images, pixel values in the different bands were extracted. The data was divided into two series: Training data (80%), validation data (20%). The relationship between satellite data and results of multivariable linear regression methods predicted, accuracy of the model by using factors such as R- squared, standard error of the mean, adjusted R-squared and Durbin Watson statistic evaluated. Results showed that model predicted with correlation coefficient, standard error of the mean, adjusted R-squared and Durbin Watson statistic were 70.3, 10.03, 61.8 and 1.709 respectively. Finally, the model evaluated by statistical indices. The indices values of Geometric Mean Error Ratio (GMER), R- squared (R2) and Root Mean Square Error (RMSE) measured 0.867, 0.638 and 0.354 respectively. The results showed that the model has a better estimation of soil salinity.

کلیدواژه‌ها [English]

  • Soil electrical conductivity
  • Remote sensing
  • Topographic parameters
  • Satellite data
  • Statistical parameters

Reference

Abdinam A. 2004. An investigation on preparing of the soil salinity map using correlation method                                             between imagery and soil salinity data in the Qazvin plain. Journal of Animal Science, 64: 33-38.

Alavipanah S.K. 1997. Study of soil salinity in the Ardakan (Iran) based upon field observation, remote sensing and GIS. Ph.D. Thesis, Gent University, 237p.

Alavipanah S.K. 2012. Application of Remote Sensing in the Earth Sciences (Soil). 4th Edition Academic Press, Tehran, 500p. (In Persian)

Allison E.W. 1989. Monitoring drought affected vegetation with AVHRR Digest-International Geoscience and Remote Sensing Symposium, 4:1965-1967.

Azhirabi R., Kamkar B., and Abdi O. 2014. Comparison of different indices adopted from Landsat images to map soil salinity in the army field of Gorgan. Journal of Soil Management and Sustainable Production, 5(1): 173-186. (In Persian)

Binh T., Vromant N., Hung N.T., Hens L., Boon E.K. 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Journal of Environment, Development and Sustainability, 7(4): 519-536.

Chit Saz V., 1999. Investigation of Soil Salinity and Alkalinity Mapping Using TM Digital Data in the Eastern Isfahan Region. MSc Thesis, Faculty of natural resources, Esfahan University of Technology, 96 p.

Cockx L., Van Meirvenne M., Vitharana U.W.A., Vancoillie F.M.B., Verbeke L.P.C., Simpson D. and Saey T. 2010. A neural-network approach to topsoil clay prediction using an emi-based soil sensor. Proximal Soil Sensing, pp. 245-254.

Farifteh J., Farshad A., George R.J. 2006. Assessing salt affected soil using remote sensing solute modeling and geophysics. Geoderma, 130(3): 191- 206.

Gao J.A. 1996. Modified soil adjusted vegetation index. Remote Sensing of Environment. 82: 303-310.

Gujarati, D.N. 2004. Basic Econometrics. Multiple regression analysis: The problem of inference, pp. 264-265.

Hengel T., Huvelink G. B. M. and Stein A. 2004. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 120: 75–93.

Horney R.D., Taylor B., Munk D.S., Roberts B.A., Lesch S.M. and Richard E.P. 2005. Development of practical site-specific management methods for reclaiming salt-affected soil. Journal of Coputers & Electronics in Agriculture, 46(1): 379-397.

Khan N.M., Rastoskuev V.V., Shilina E.V. and Yohei S. 2001. Mapping salt affected soils using remote sensing indicators-A simple approach with the use of GIS IDRIST. 22th Asian Conference on Remote Sensing, November 5-9, Singapore, 8: 183-257.

Zarco-Tejada, P.J., Ustin, S.L., and Whiting, M.L. 2005. Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Journal of Agronomy, 97(3): 641-653.

Lowenberg-DeBoer J., and Erickson K. 2000. Precision Farming Profitability. Purdue Research Foundation 132p.

Matinfar H.R., Sarmadian F., and Alavipanah S.K. 2010. Characterization of Soil Salinity in Arid Region of Kashan by Digital Processing of IRS_1D Data. Journal of Watershed Engineering and Management, 2(4): 211-220. (In Persian)

Mokhtari D.E., Douaoui A., Yahiaoui I. 2012. Geomatics use in the evaluation of surface qualities degradation in saline area (The case of the lower Cheliff plain). Journal of Energy Procedia, 18: 1557–1572.

Moore I.D., Grayson R.B. and Landson A.R. 1991. Digital terrain modeling. A review of hydrological, geomorphological, and applications. Journal of Hydrological Processes, 5(1): 3– 30.

Pettorelli N., Vik O., Mysterud A., Gaillard J.M., Tucker C.J. and Stenseth N.C. 2005. Using the satellite –derived NDVI to assess ecological responses to environmental change. Journal of Trends in Ecology and Evolution, 9(20): 503-510.

Rao B., Sankar T., Dwivedi R., Thammappa S., Venkataratnam L., Sharma R. and Das S. 1995. Spectral behaviour of salt-affected soils.International Journal of Remote Sensing, 16(12): 2125-2136.

Saxsena R.K., Verma R., Srivastava J.Y., Patel N.K., Nasre R.A., Barthwal A.K., Shiwalkar A.A. and Londhe S.L. 2003. Spectral reflectance properties of some dominant soils occurring on different altitudinal zones in Uttaranchal Himalayas. Journal of Agropedology, 13(2): 35-43.

Soleimanidamaneh M. and Zarepisheh M. 2009. Shannons entropy combining the efficiency results of different DEA models: Method and application. Journal of Expert System with Applications, 36(3): 47- 51.

Sommer M., Wehrhan M., Zipprich M., Castell Z.W., Weller U., Castell W. Ehrich, S. Tandler B. and Selige T. 2003. Hierarchical data fusion for mapping soil units at field scale.Geoderma, 112(3): 179–196.

Taghizadeh Mehrjardi R., Sarmadian F Savaghebi Gh., Omid m., Toomanian N., Roosta M.J. and Rahimian M.H. 2014. Comparison of ANFIS, Genetic Algorithm, artificial neural network and multivariate regression methods in prediction of soil salinity (Case study: Ardakan region). Journal of Range and Watershed Management, 66(2): 207-222. (In Persian)

Wagner b., Tarnawski v.r., Hennings., Müller v., Wessolek u and Plagge R. 2001. Evaluation of pedotransfer functions for unsaturated soil hydraulic conductivity using an independent data set.Geoderma, 102(3): 275-297.

Zenouzi L., Namdar M. and Saadat H. 2011. Evaluation the NDVI and EC of Soil in Arid and Semi-Arid Area (Case study: Marand region). The national seminar on watershed management sciences and engineering, Isfahan, April 27-28.