نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه شهرکرد

چکیده

از گیاهان می‌توان برای پاکسازی خاک از آلاینده‌ها استفاده کرد ولی، برای این امر ممکن است سالها و یا حتی چندین دهه وقت لازم باشد، به همین دلیل از تیمارهای شیمیایی و بیولوژیکی برای گیاه‌پالایی استفاده می‌شود. در پژوهش حاضر توانایی ذرت (هیبرید سینگل کراس 704) برای اندوزش سرب در یک خاک لومی شنی آلوده به سرب در قالب طرح کاملا تصادفی در سه تکرار در گلخانه بررسی شد. اسید سیتریک وEDTA در سطوح غلظتی صفر، 5/0 و 1 میلی‌مول بر کیلوگرم خاک و عصاره کود مرغی در سطوح غلظتی صفر، 5/0 و 1 گرم بر کیلوگرم خاک استفاده شدند. نتایج نشان داد که اثر کلات‌کننده‌ها بر غلظت سرب در اندام هوایی و ریشه، جذب سرب اندام هوایی و ضریب تغلیظ زیستی معنی‌دار (05/0p≤) بود. با افزایش غلظت کلات‌کننده‌ها وزن خشک اندام هوایی به‌صورت غیرمعنی‌دار کاهش یافت. استفاده از غلظت‌های 5/0 و 1 میلی‌مولEDTA بر کیلوگرم خاک غلظت سرب در اندام هوایی ذرت را به‌ترتیب 164 و 260 درصد برابر شاهد به‌صورت معنی‌دار افزایش داد. کاربرد 1 میلی‌مول بر کیلوگرم خاک اسید سیتریک و 1 گرم بر کیلوگرم خاک عصاره کود مرغی غلظت سرب را در اندام هوایی ذرت به‌ترتیب 122 و 116 درصد برابر شاهد افزایش داد. کاربرد 1میلی‌مول در کیلوگرم EDTA و اسید سیتریک ضریب تغلیظ زیستی را به‌ترتیب 145 و 140 درصد برابر شاهد به-صورت معنی‌دار افزایش داد. کاربرد غلظت 1 میلی‌مول EDTA در کیلوگرم خاک ضریب انتقال را 207 درصد برابر شاهد به‌صورت معنی‌دار افزایش داد. از آنجایی که استفاده زیاد از حد کلات‌کننده‌ها می‌تواند باعث قابلیت‌استفاده بیشتر سرب در خاک شود بدون این که جذب گیاه را افزایش دهد، لذا استفاده از سطوح غلظتی بالاتر توصیه نمی‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

The impact of EDTA, citric acid and poultry manure extract on phytoremediation of Pb by corn in a sandy loam contaminated soil

چکیده [English]

The plants which can be used to clean up the heavy metals contaminated soils but, for this reason may take years or even decades, because of this chemical and biological treatment uses for phytoremediation. In this study, the potential of corn (hybrid KSC. 704) for accumulation of lead was conducted as an experiment using a completely randomized design with three replications in a greenhouse experiment in a sandy loam soil contaminated with Pb. Citric acid and EDTA were used at concentrations level 0, 0.5 and 1 mmol kg-1 soil and poultry manure extract 0, 0.5 and 1 g kg-1 soil. The results showed that the effect of chelating agents on the shoots and roots Pb concentration, shoots absorption Pb and biological concentration factor (BCF) was (p <0.05) significant. With increasing chelators concentration shoots dry weight nonsignificantly decreased. The results showed that application of 0.5 and 1 mmol kg-1 soil concentrations of EDTA were significantly increased Pb concentration in corn shoots 164 and 260 (%) (significant for 1 mmol kg-1 of EDTA) times more than the control, respectively. Application of 1 mmol kg-1 soil citric acid and 1 g kg-1 soil poultry manure extract were increased Pb concentration in corn shoots 122 and 116 (%) times more than the control, respectively. Application of 1 mmol kg-1 soil EDTA and citric acid significantly increased bioconcentration factor 145 and 140 (%) times more than the control, respectively. Application of 1 mmol kg-1 soil EDTA significantly increased translocation factor 207 (%) times more than the control. Since inordinate use of chelators can make more Pb availibility in soil without increasing plant uptake, therefore application of more concentration level not recommend.

کلیدواژه‌ها [English]

  • phytoremediation
  • heavy metal
  • EDTA
  • citric acid
  • poultry manure extract
Babaeian E., Ghafarian M., and Homaee M. 2011. Comparison of EDTA, NTA and oxalic acid effects on fixation and extraction of lead from soil. The first National Phytoremediatin Congress, February 17, International Center of Science, Technology and Environmental Science Kerman, p.136. (In Persian)
Bini C., Gentili L., Maleci-Bini L., and Vaselli O. 1995. Trace elements in plants and soils of urban parks. Annexed to Contaminated Soil Prost, INRA. Paris.
Blaylock M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., and Kapulnik Y. 1997. Enhanced ccumulation of Pb in Indian mustard by soil-applied chelating agents. Environmental Science and Technology, 31: 860-865.
Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54: 464-465.
Campbell C.R., and Plank C.O. 1998. Preparation of plant tissue for laboratory analysis. In: Kalra Y.P. (ed.), Handbook of Reference Methods for Plant Analysis. CRC Press, Taylor and Francis Group. pp: 37–50.
Chen Y., and Xiangdong L.Z. 2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 57: 187-196.
Dawood M., Chen F., Zhao J., Zhang G., and Wu F. 2009. Comparison of EDTA and citric acid enhanced phytoextraction of heavy metal in artificially metal contaminated soil by Typha agustifolia. International Journal of Phytroemediation, 11: 109-121.
Doumett S., Lamperi L., Checchini L., Azzarello E., Mugnai S., Mancuso S., Petruzzelli G., and Del Bubba M. 2008. Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere, 72: 1481-1490.
Evangelou M.W.H., Ebel M., and Schaeffer A. 2007. Chelate assisted phytoextraction of heavy metals from soil: effect, mechanism, toxicity and fate of chelating agents. Chemosphere, 68: 989-1003.
Greman H., Vodnik B., Velikonja-Bolta D., and Lestan D. 2003. EDDS as a new chelate for environmentally safe enhanced lead phytoextraction. Journal of Environmental Quality, 32: 500-506.
Karczewska A., Orlow K., Kabala C., Szopka K., and Galka B. 2011.  Effects of chelating compounds on mobilization and phytoextraction of copper and lead in contaminated soils. Communications in Soil Science and Plant Analysis, 42: 1379-1389.
Lai H.Y., and Chen Z.S. 2005. The EDTA effect on phytoextraction of single and combined metals contaminated soils using rainbow pink (Dianthus chinensis). Chemosphere, 60: 1062-1071.
Lesage E., Meers E., Vervaeke P., Lamsal S., Hopgood M., Tack F.M.G., and Verloo M.G. 2005. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. International Journal of Phytoremediation, 7: 143-152.
Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
 Liphadzi M.S., and Kirkham M.B. 2006. Availability and plant uptake of heavy metals in EDTA-assisted phytoremediation of soil and composted biosolids. South African Journal of Botany, 72: 391-397.
Loeppert R.H., and Suarez D.L. 1996. Carbonate and gypsum. In: Sparks D.L. (Eds.), Methods of Soil Analysis. SSSA, Madison, WI, pp. 437-474.
Luo C., shen Z., Lou S., and Li X. 2005. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59: 1-11.
Nelson D.W., and Sommers L.E. 1996. Carbon, organic carbon, and organic matter. In: Sparks D.L. (Eds.), Methods of Soil Analysis. SSSA, Madison, WI, pp. 961-1010.
Rhoades J.D. 1996. Salinity: electrical conductivity and total dissolved solids. In: Sparks D.L. (Eds.), Methods of Soil Analysis. SSSA, Madison, WI, pp. 417–435.
Safari Singani A.A., and Ahmadi P. 2012. Manure application and cannabis cultivation influence on speciation of lead and cadmium by selective sequential extraction. Soil and Sediment Contamination, 21: 305–321.
Singh S., Saxena R., Pandey K., Bhatt K., and Sinha S. 2004. Response of antioxidants in sunflower (Helianthus annuus L.) grown on different amendments of tannery sludge: its metal accumulation potential. Chemosphere, 57: 1663-1673.
Solhi M. 2006. Phytoremediation of Pb and Zn contaminated soils and use of radioisotopes in order to study the behavior of Zn in soil and plant. PhD Thesis, College of Agriculture, Isfahan University of Technology.
Sposito G.L., Lund J., and Chang A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases. Soil Science Society of America Journal, 46: 260-265.
Sun U.B., Zhou Q., An J., Liu W., and Liu R. 2009. Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant. Geoderma, 150: 106-112.
Tahmasbian I., and Safari Sinegani A.A. 2013. Monitoring the effects of chelating agents and electrical fields on active forms of Pb and Zn in contaminated soil. Environmental Monitoring and Assessment, 185: 8847-8860.
Tembo B.D., Sichilongo K., and Cernak J. 2006. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere, 63: 497-501.
Thomas G.W. 1996. Soil pH and soil acidity. In: Sparks D.L. (ed.), Methods of Soil Analysis. SSSA, Madison, WI, pp. 475-490.
Vassilev A., Vangronsveld J., and Yordanonov I. 2002. Reviews: Cadmium phytoextraction: present state, biological backgrounds and research needs. Bulgarian Journal of Plant Physiology, 28: 68-95.
Wang Z., Shan X.Q., and Zhang S. 2002. Comparison between fractionation and bioavailability of trace elements in rhizosphere and bulk soils. Chemosphere, 46(8): 1163-1171.
Zhongqiu Z., Meizhu X., Guangyu J., Xiaona L., Zhongke B., and Yizong H. 2010. Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays L.,). Journal of Hazardous Materials, 181: 455-459.