References
Ahmady-Birgani H., Agahi E., Ahmadi S.J., and Erfanian M. 2018. Sediment source fingerprinting of the Lake Urmia sand dunes. Scientific Reports, 8: 206.
Aller D., Rathke S., Laird D., Cruse R., and Hatfield J. 2017. Impacts of fresh and aged biochars on plant available water and water use efficiency. Geoderma, 307: 114-121.
Andersen R.A. 2005. Algal culturing techniques, Elsevier Academic Press, London, 578 p.
Ansari S., and Fatma T., 2016. Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS One 11: e0158168.
Asadzadeh F., Khodadadi M., and Ehsan Malahat E. 2017. Predicting wind erodibility of sand dunes by particle size distribution models in parts of western coast of Urmia Lake. Iranian Journal of Range and Desert Research, 24: 126-141. (In Persian).
Belnap J., Walker B.J., Munson S.M., and Gill R.A. 2014. Controls on sediment production in two US deserts. Aeolian Research, 14: 15-24.
Bowker M.A., Belnap J., Chaudhary V.B., and Johnson N.C. 2008. Revisiting classic water erosion models in drylands: The strongimpact of biological soil crusts. Soil Biology and Biochemistry, 65: 158-167.
Bowker M.A., Belnap J., Davidson D.W. and Phillips S.L. 2005. Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecological Applications, 15: 1941-1951.
Buchanan R.E., and Gibbons N.E. 1974. Bergey’s manualof determinative bacteriology (8th Ed.). Williams and Wilkins, Baltimore, Maryland. 1246 p.
Chamizo S., Mugnai G., Rossi F.R., Certini G. and De Philippis R. 2018. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Frontiers in Environmental Science, 6: 49.
Chamizo S., Cantón Y., Miralles I., and Domingo F. 2012. Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biology and Biochemistry, 49: 96-105.
Colica G., Li H., Rossi F., Li D., Liu Y., and De Philippis R. 2014. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biology and Biochemistry, 68: 62-70.
De Philippis R., and Vincenzini M. 1998. Extracellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiological Reviwes, 22: 151-175.
Douzali Joushin F., Badv K., Barin M. and Sultani Jige H. 2018. Inhibition of wind erosion by SBR polymer and Bacillus pasteurii microorganism (Case study: Jabal Kandy region). Iranian Journal of Soil and Water Research, 49: 795-806. (In Persian)
Garbeva P., Tyc O., Remus-Emsermann M.N.P., van der Wal A., Vos M., Silby M., and Boer W. 2011. No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS One 6: e27266.
Garrity G.M., Boone D.R., and Castenholz R.W. 2001. Bergey’s manualof systematic bacteriology. (2nd Ed.). New York, USA. 1: 173 p. Harvey, R. A. 2007. Microbiology. Lippincott Williams & Wilkins, 395 p.
Hamzehpour N., and Bogaert P. 2019. Spatio-temporal prediction of soil salinity using soft data and Bayesian maximum entropy method in western shores of Urmia Lake. Applied Soil Research, 6: 71-83.
Hassanzadeh E., Zarghami M., and Hassanzadeh Y. 2012. Determining the main factors in declining the Urmia Lake level by using system dynamics modeling. Water Resources Management, 26: 129-145.
He M., Hu R., and Jia R. 2019. Biological soil crusts enhance the recovery of nutrient levels of surface dune soil in arid desert regions. Ecological Indicators, 106: 105497.
Issa O.M., Défarge C., Le Bissonnais Y., Marin B., Duval O., Bruand A., Luigi D’Acqui P., Nordenberg S., and Annerman M. 2007. Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant and Soil, 290: 209-219.
Kheirfam H. 2020. Increasing soil potential for carbon sequestration using microbes from biological soil crusts. Journal of Arid Environments, 172: 104022.
Kheirfam H., Sadeghi S.H.R., Homaee M., and Zarei Darki B. 2017a. Quality improvement of an erosion-prone soil through microbial enrichment. Soil and Tillage Research, 165: 230-238.
Kheirfam H., Sadeghi S.H.R., and Zarei Darki B. 2019. Soil conservation in an abandoned agricultural rain-fed land through inoculation of cyanobacteria. Catena, 104341. Catena, 152:156-163.
Kheirfam H., Sadeghi S.H.R., Zarei Darki B., and Homaee M. 2017b. Controlling rainfall-induced soil loss from small experimental containers through inoculation of bacteria and cyanobacteria. Catena, 152: 40-46.
Le Bissonnais Y. 2016. Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 67: 11-21.
McDonald J.H. 2015. Handbook of biological statistics, (3rd Ed.). Sparky House Publishing, Baltimore, Maryland. 305 p.
Muñoz-Rojas M., Románd J.R., Roncero-Ramos B., Erickson T.E., Merritt D.J., Aguila-Carricondo P., and Cantónd Y. 2018. Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Science of the Total Environment, 636: 1149-1154.
Nikseresht F., Landi A., Sayyad G., Ghezelbash G., and Bahrami H. 2019. Effect of Sporosarcina pasteurii and culture media on Microbial Carbonate Induced Precipitation and wind erosion control in sandy soil of Khuzestan. Applied Soil Research, 7(3):1-13. (In Persian)
Nan L., Dong Z., Xiao W., Li C., Xiao N., Song S., Xiao F., and Du L. 2018. A field investigation of wind erosion in the farming–pastoral ecotone of northern China using a portable wind tunnel: a case study in Yanchi County. Journal Arid Land, 10: 27-38.
Perera I., Subashchandrabose S.R., Venkateswarlu K., Naidu R., and Megharaj M. 2018. Consortia of cyanobacteria/microalgae and bacteria in desert soils: an underexplored microbiota. Applied Microbiology and Biotechnology, 102: 7351-7363.
Raanan H., Felde V.J., Peth S., Drahorad S., Ionescu D., Eshkol G., Treves H., Felix-Henningse P., Berkowicz S.M., Keren N., Horn R., Hagemann M., and Kaplan A. 2015. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust. Environmental Microbiology, 18: 372-383.
Rossi F., and De Philippis R. 2015. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life, 5(2): 1218-1238.
Rossi F., Li H., Liu Y., and De Philippis R. 2017. Cyanobacterial inoculation (Cyanobacterisation): Perspectives for the development of a standardized multifunctional technology for soil fertilization and desertification reversal. Earth-Science Reviews, 171: 28-43.
Sadeghi S.H.R., Ghavimi Panah M.H., Younesi H., and Kheirfam H. 2018. Ameliorating some quality properties of an erosion-prone soil using biochar produced from dairy wastewater sludge. Catena, 171: 193-198.
Sadeghi S.H.R., Jalili, Kh., and Nikkami D. 2009. Land use optimization in watershed scale. Land Use Policy, 26: 186-193.
Vieira F.C.S. and Nahas E. 2005. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiological Research, 160: 197-202.
Xue S., Ye Y., Zhu F., Wang Q., Jiang J., and Hartley W. 2019. Changes in distribution and microstructure of bauxite residue aggregates following amendments addition. Journal of Environmental Science, 78: 276-286.
Wang W.B., Liu Y.D., Li D.H., Hua C.X., and Rao B.Q. 2009. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biology and Biochemistry, 41: 926-929.
Zou X., Li J., Cheng H., Wang J., Zhang C., Kang L., Liu W., and Zhang F. 2018. Spatial variation of topsoil features in soil wind erosion areas of northern China. Catena, 167: 429-439.