References
Alonso C.V., Bennett S., and
Stein O.R. 2002. Predicting head cut erosion and migration in concentrated flows.
Water Resources Research, 38(12):39-1.
Capra A., Mazzara L. M., Scoicolone B. 2005. Application of the EGEM model to predict ephemeral gully erosion in Sicily, (Italy). Catena,59: 133-146.
Chaplot V. 2013. Impact of terrain attributes, parent material and soil types on gully erosion. Geomorphology, 186:1-11.
Hafezi Moghaddas N. 2011. Engineering Geology. Arses press. 488p. (In Persian)
Jafarai Gorzin B., and Kavian A. 2009. Assessment of Gully Erosion Occurrence in Sorkh-Abad Watershed Using Remote Sensing and Geographical Information System. Iran-Watershed Management Science and Engineering. 3(7): 55-58. (In Persian)
Kemper W.D., and Rosenau R.C. 1986. Aggregate stability and size distribution. In: Klute A. (Ed.). Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods. American Society of Agronomy. Soil Science Society of America, Madison, WI. Pp 425–442.
Kompani-Zare M., Soufi M., Hamzehzarghani H., and Dehghani M. 2011. The effect of some watershed, soil characteristics and morphometric factors on the relationship between the gully volume and length in Fars Province, Iran. Catena, 86:150–159.
Nachtergaele J., and Poesen J. 2002. Spatial and temporal variations in resistance of loess-derived soils to ephemeral gully erosion. European Journal of Soil Science, 53:449– 463.
Nachtergaele J., Poesen J., Steegen A., Takken I., Beuselinck L., Vandekerckhove L., and Govers G. 2001. The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils. Geomorphology, 40:237–252.
Nayebi H. 2014. Applied Advanced Statistics by SPSS. University of Tehran press. 401p. (in Persian)
Page A. L., Miller R.H., and Keeney D.R. 1982. Methods of Soil Analysis, part2, chemical and microbiological properties. American Society of Agronomy,Inc. Soil Science Society of America. Madison, WI. 510p.
Poesena J., Nachtergaelea J., Verstraetena G., and Valentin C. 2003. Gully erosion and environmental change: importance and research needs. Catena, 50:91– 133
Rafahi H.Gh. 2006. Water erosion and conservation. University of Tehran press. 671p. (In Persian)
Reynolds W.D., Elrick D.E., and Youngs E.G. 2002. Ring or cylinder infiltrometers (vadose zone). In: Dane J.H. and G.C. Topp (Ed.), Methods of soil analysis, Part 4. Physical methods, Soil Science Society of America,Madison, Wisconsin USA. pp. 818- 826.
Rezaei Moghaddam M.H., and Behbodi A. 2011. Application of EGEM in Estimating the Erosion of Ephemeral Gullies in Sarand Chay Drainage Basin
. Geographic Space. 35: 135-153. (In Persian)
Shahab H., Emami H., haghnia G.H., Esmali A., and Mahmood Abadi M. 2016. Effect of topography and determination of the most important soil properties on gully erosion development in Ardebil area. Ferdowsi University of Mashshd PhD thesis. 197p (In Persian)
Soleimanpour S.M., Soufi M., Ahmadi H. 2009. Determining Effective Factors on Gully Development in Konartakhte Region, Fars Province.
Water and Soil, 23:131-141. (In Persian)
Valentin C. J., Poesen J., Yong Li. 2005. Gully erosion: Impacts, factors and control. Catena, 63:132–153.
Wischmeier W.H., and Smith D.D., 1978. Predicting rainfall erosion losses—a guide to conservation planning. USDA Agricultural Handbook, Washington, D.C, 537p
Woodward D.E. 1999. Method to predict cropland ephemeral gully erosion. Catena, 37:393-399.
Zarei H., Najafinejad A., Hosseinalizadeh M., and Alipour K. 2018. Efficiency assessment of the EGEM to estimate gully erosion in Iky-Aghzly watershed of Golestan province. Journal of Water and Soil Conservation, 24(5): 147-162. (In Persian)