Aharoni C., Levinson S., Ravina I., and Sparks DL. 1991. Kinetics of soil chemical reactions: Relationships between empirical equations and diffusion models. Soil Science Society of America Journal, 55: 1307-1312.
Basta A.H., Fierro V., El-Saied H., and Celzard A. 2009. 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Bioresource Technology, 100: 3941-3947.
Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54: 464-465.
Bremner J.M. 1996. Nitrogen Total in: D.L. Sparks et al., (Eds) Methods of Soil Analysis. Part 3, 3rd ed., American. Society. Agronomy, Madison. WI, pp. 1085 – 1122.
Buragohain M., Bhuyan B., and Sarma H.P. 2010. Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environmental Monitoring and Assessment, 170: 345-51.
Cheng W., Tsuruta H., Chenb G., and Yagi K. 2004. N2O and NO production in various Chinese agricultural soils by nitrification. Soil Biology and Biochemistry, 36: 953-963.
Chien SH., and Clyton WR. 1980. Application of elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society America Journal, 44: 265-286.
Chia C.H., Downie A., and Munroe P. 2015. Characteristics of Biochar: Physical and Structural Properties. In: Biochar for Environmental Management: Science.Technology and Implementation, 89 p.
Ding Z., Hu X., Wan Y., Wang S., and Gao B. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33: 239–245.
Dang Y.P., Dalal R.C., Edwards D.G., and Tiller K.G. 1994. Kinetics of zinc desorption from vertisols. Soil Science Society of America Journal, 58: 1392-1399.
Fan Y., Wang B., Yuan S., Wua X., Chen J., and Wang L. 2010. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology, 101: 7661-7664.
Feng Z., and Zhu L. 2018. Sorption of phenanthrene to biochar modified by base. Frontiers of Environmental Science & Engineering, 12: 1-12.
Gaskin J., Steiner C., Harris K., Das K., and Bibens B. 2008. Effect of low temperature pyrolysis conditions on biochar for agriculture use. Transaction of the Asabe, 51: 2061-2069.
Gee G.W., and Bauder J.W. 1986. Particle-Size Analysis. In A. Klute (Ed.) Method of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, pp. 383-411.
Gilmour JT.1984. The effect of soil properties on nitrification and nitrification inhibition. Soil Science Society America Journal, 48: 1262-1266.
Gomez-Eyles J.L., Sizmur T., Collins C.D., and Hodson M.E. 2011. Effects of biochar and the earthworm eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution, 159: 616-622.
Grejtovsky A., Grejtovsky A., Markusova K., Eliasova A., and Safarik, P.J. 2006. The response of chamomile (Matricaria chamomilla L.) plants to soil zinc supply. Plant, Soil and Environment, 52: 1-7.
Hall G., Woodborne S., and Scholes M. 2008. Stable carbon isotope rations from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology, 247: 384-400.
Haluschak P. 2006. Laboratory methods of soil analysis. Canada -Manitoba soil survey, 3-133.
Ho YS. 2006. Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136: 681-689.
Hu X., Ding Z., Zimmerman A.R., Wang S., and Gao B. 2015. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68: 206-216.
Inyang M., Gao B., Yao Y., Xue Y., Zimmerman A.R., Pullammanappallil P., and Cao X. 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110: 50–56.
Kabata-Pendias A., and Pendias H. 2000. Trace elements in soils and plants. CRC Press, Boca Raton, Florida.
Karimi A., Moezzi A.A., Chorom M., and Enayatizamir N. 2020. Influence of Sugarcane bagasse biochar on nutrition availability and biological properties of a calcareous soil. Applied Soil Research, 8(1): 1-17. (In Persian)
Karami N., Clemente R., Moreno-Jiménez E., Lepp N. W., and Beesley L. 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191: 41-48.
Khater A.H., and Zaghloul A.M. 2001. Copper and zinc desorption kinetics from soil: Effect of pH, Paper Presented at the 17th World Conference on Soil Science. In Thailand, Symposium, 47 p.
Koushafar M., Khoshgoftarmanesh A.H., Moezzi A.A., and Mobli M. 2011. Effect of dynamic unequal distribution of salts in the root environment on performance and crop per drop (CPD) of hydroponic-grown tomato. Scientia Horticulturae, 131: 1-5.
Kuo S., and Lotse E.G. 1974. Kinetics of phosphate adsorption and desorption by lake sediments. Soil Science Society of America, 38: 50- 54.
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W., and Crowley D. 2011. Biochar effects on soil biota. A review. Soil Biology and Biochemistry, 43: 1812–1836.
Li Q., Zhai J., Zhang W., Wang M., and Zhou J. 2006. Kinetic studies of adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Material, 141: 163.167.
Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
Loeppert R.H., and Suarez D.L. 1996. Carbonate and Gypsum. In: Sparks, D.L. (Eds). Methods of Soil Analysis. Part 3. 3rd Ed. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, pp. 437- 474.
Lua A.C., Yang T. and Guo J. 2004. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis, 72: 279-287.
Ma L., Xu R., and Jiang J. 2010. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal Environmental Science, 22: 689- 695.
Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. 3rd Ed. In: Sparks, D. L., et al., (Ed). Methods of Soil Analysis. Part 3- Chemical Methods and Microbiological Properties. Soil Science of America and American Society of Agronomy, Madison, Wisconsin, pp. 961-1010.
Norozi M., Tabatabaii S.H., Norozi M.R., and Motaghyan H.R. 2016. Biochar short-term effects of date leaves on maintaining moisture in sandy loam soil. Journal of Water and Soil Conservation, 6: 137-150. (In Persian)
Rajapaksha A.U., Chen S.S., Tsang D.C., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N.S., and Ok Y.S. 2016. Engineered/designer biochar for contaminant removal/ immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148: 276- 291.
Regmi P., Garcia Moscoso J.L., Kumar S., Cao X., Mao J., and Schafran G. 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109: 61-69.
Reyhanitabar A., and Karimian N. 2008. Kinetics of copper desorption of selected calcareous soils from Iran. Amrican Eurasian Journal Agriculcgral Environntal Science, 4: 287-293.
Rhoades J.D., Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., and Sumner M.E. 1996. Salinity: Electrical Conductivity and Total Dissolved Solids. Methods of Soil Analysis. Part 3-Chemical Methods, pp. 417-435.
Sacmacı S., Kartal S., and Sacmacı M. 2012. Determination of Cr (III), Fe (III), Ni (II), Pb (II) and Zn (II) ionsby FAAS in environmental samples after separation and preconcentration by solvent extraction using a triketone reagent. Environmental Bulletin, 21: 1563-70.
Sefidgar shahkolaie S., Barani Motlagh M., Dordipour E. and Khormali F. 2020. Effects of organic and inorganic amendments on fractionation of cadmium during incubation time in a contaminated calcareous soil. Applied Soil Research, 8(3): 14-26. (In Persian)
Sharpley A.N. 1983. Effect of soil properties on the kinetics of phosphorus desorption. Soil Science Society of America, 47: 462- 467.
Shen X., Huang D., Zhu H., Wang Sh., Xu Ch., He Y., Luo Z., and Zhu Q. 2016. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. Journal of Environmental Management, 168: 245-251.
Smith SR. 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste compost compared to sewage sludge. Environment International, 35: 142-56.
Song W., and Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of analytical and Applied Pyrolysis, 94: 138-145.
Sparks DL, 1986. Soil Physical Chemistry. Kinetics of Reactions in Pure and Mixed Systems. CRC Press, Boca Raton, FL, pp. 83- 145.
Sumner M.E., Miller W.P., Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., and Johnston C.T. 1996. Cation Exchange Capacity and Exchange Coefficients. Methods of Soil Analysis. Part 3-Chemical Methods, pp. 1201-1229.
Tan Z., Wang Y., Kasiuliene A., Huang C., and Ai P. 2017. Cadmium removal potential by rice straw-derived magnetic biochar. Clean Technologies and Environmental Policy, 19: 761-774.
Thomas G.W. 1996. Soil pH and Soil Acidity. In: D.L. Sparks et al., (Eds) Methods of Soil Analysis. part 3-American Society of Agronomy., Madison. WI, pp. 475-490.
Tarley CRT, Ferreira SLC, and Arruda MAZ. 2004. Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchemical Journal, 77: 163-175.
Usman A.R.A., Ahmad M., El-Mahrouky M., Al-Omran A., Ok Y.S., Sallam A.S., El-Naggar A.H., and Al-Wabel M.I. 2016. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health, 38: 511–521.
Ullah H., Noreena Fozia S., Rehman A., Waseem A., Zubair S., Adnana M., and Ahmad I. 2017. Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arabian Journal of Chemistry, 10: 10-18.
Vithanage M., Rajapaksha A.U., Zhang M., Thiele-Bruhn S., Lee S.S., and Ok Y.S. 2015. Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research, 22: 2175–2186.
Wang H., Gao B., Wang S., Fang J., Xue Y., and Yang K. 2015. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197: 356–362.
Wang J., and Wang S. 2019. Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227: 1002-1022.
Wongrod S., Simon S., van Hullebusch E.D., Lens P.N., and Guibaud, G. 2018. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As (III and V) and Cd (II) sorption. International Biodeterioration & Biodegradation, 135: 96-102.
Zhang Q.P., Liu Q.C., Li B., Yang L., Wang C.Q., Li Y.D., and Xiao R. 2017. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175: 332–340.