Increasing the Bioavailability of Phosphorus Through Phosphate Solubilizing Bacteria to Improve Organic Farming Systems

Document Type : Original Article

Authors

1 Soil and Water Research Institute, Agricultural Research, Education and Promotion Organization, Karaj, Iran.

2 Soil and Water Research Institute (SWRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

3 Soil and Water Research Institute, Agricultural Research, Education and Promotion Organization, Karaj, Iran

10.30466/asr.2025.55484.1851

Abstract

Phosphate chemical fertilizers have traditionally been used to address phosphorus deficiency in agricultural production. However, the use of such fertilizers has been restricted in many countries due to the non-renewable nature of their raw materials and their detrimental impact on the ecological health of the environment. Therefore, it is essential to develop efficient and environmentally-friendly alternatives to meet plants' phosphorus needs. In this regard, phosphate-solubilizing bacteria (PSB) are capable of enhancing phosphorus nutrition and improving plant performance. Recent efforts to uncover the complex mechanisms involved in the solubilization of insoluble phosphates by PSB have focused on the key role of genes involved in this process and the secretion of organic and inorganic acids. These acids, by chelating metal ions such as calcium, iron, and aluminum or by lowering the soil pH, release stabilized phosphates. Additionally, the production of exopolysaccharides (EPS) by PSB chelates metal ions and reduces many cations stabilizing phosphate, facilitating phosphorus uptake. Moreover, the secretion of enzymes like phosphatase and phytase helps release phosphorus from organic matter. In this context, the use of omics technologies has also enabled more precise analysis of these processes in natural systems and their application in organic farming. Studies indicate that harnessing the biodiversity of PSB and gaining a deeper understanding of their genetic regulation can significantly enhance plant performance and the sustainability of agricultural systems. This review highlights the potential role of PSB in organic agriculture as a sustainable approach to increasing phosphorus bioavailability.

Keywords

Main Subjects


Adhikary, H., Sanghavi, P. B., Macwan, S. R., Archana, G., and Kumar, G. N. 2014. Artificial citrate operon confers mineral phosphate solubilization ability to diverse fluorescent pseudomonads. PLoS One, 9, e107554. https://doi.org/10.1371/journal.pone.0107554.
Amirhandeh, M. S., Nosratabad, A. F., Norouzi, M., and Harutyunyan, S. 2012. Response of Coker flue-cured tobacco Nicotiana tabacum to inoculation with Azotobacter chroococcum at various levels of nitrogen fertilization. Australian Journal of Crop Science, 65, 861-868.
Anand, K. U. M. A. R., Kumari, B. A. B. Y., and Mallick, M. A. 2016. Phosphate solubilizing microbes: an effective and alternative approach as biofertilizers. International Journal of Pharmacy and Pharmaceutical Sciences, 82, 37-40.
Angelini, S., Moreno, R., Gouffi, K., Santini, C., Yamagishi, A., and Berenguer, J. 2001. Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli. FEBS Letters, 506, 103–107. https://doi.org/10.1016/s0014-57930102890-3.
Asea, P. E. A., Kucey, R. M. N., and Stewart, J. W. B. 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry, 20, 459–464. https://doi.org/10.1016/0038-07178890058-2.
Babu-Khan, S., Yeo, T. C., Martin, W. L., Duron, M. R., Rogers, R. D., and Goldstein, A. H. 1995. Cloning of a mineral phosphate-solubilizing gene from Pseudomonas cepacia. Applied and Environmental Microbiology, 61, 972–978. https://doi.org/10.1128/AEM.61.3.972-978.1995.
Banerjee, S., Palit, R., Sengupta, C., and Standing, D. 2010. Stress induces phosphate solubilisation by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Australian Journal of Crop Science, 4, 378–383. https://doi.org/10.1016/j.ijpvp.2009.10.002.
Bergkemper, F., Scholer, A., Engel, M., Lang, F., Krüger, J., Schloter, M., and Schulz, S. 2016. Phosphorus depletion in forest soils shapes bacterial communities towards phosphorus recycling systems. Environmental Microbiology, 18, 1988–2000. https://doi.org/10.1111/1462-2920.13188.
Buch, A., Archana, G., and Gattupalli, N. K. 2010. Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield. Bioresource Technology, 101, 679–687. https://doi.org/10.1016/j.biortech.2009.08.075.
Bünemann, E. K. 2015. Assessment of gross and net mineralization rates of soil organic phosphorus - A review. Soil Biology and Biochemistry, 89, 82–98. https://doi.org/10.1016/j.soilbio.2015.06.026.
Cabugao, K. G., Timm, C. M., Carrell, A. A., Childs, J., Lu, T. S., Pelletier, D. A. and Norby, R. J. 2017. Root and rhizosphere bacterial phosphatase activity vary with tree species and soil phosphorus availability in Puerto Rico tropical forest. Frontiers in Plant Science, 8, 1834. https://doi.org/10.3389/fpls.2017.01834.
Chen, Y., Li, S., Liu, N., He, H., Cao, X., Lv, C., and Dai, J. 2021. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. Environmental Science and Pollution Research International, 28, 23036–23047. https://doi.org/10.1007/s11356-020-12203-y.
Darch, T., Blackwell, M. S. A., Hawkins, J. M. B., Haygarth, P. M., and Chadwick, D. 2014. A meta-analysis of organic and inorganic phosphorus in organic fertilizers, soils, and water: Implications for water quality. Critical Reviews in Environmental Science and Technology, 44, 2172–2202. https://doi.org/10.1080/10643389.2013.790752.
DeLuca, T. H., MacKenzie, M. D., and Gundale, M. J. 2009. Biochar effects on soil nutrient transformations. In J. Lehmann and S. Joseph Eds., Biochar for Environmental Management: Science and Technology pp. 251–270. Earthscan.
Fallah Nosratabad, A. R. 2020. The necessity of using phosphate rock and phosphate solubilizing microorganisms in rapeseed cultivation. Oil Seeds Journal, 22, 52-62. (In Persian)
Fallah Nosratabad, A. R., Armandeh, M., Shariati, Sh., Hosseini Chaleshtari, M., and Qolizadeh, A. 2021. Phosphate Rock in Agriculture, Its Importance, Reserves and Application in Rice Cultivation. Country Rice Research Institute, Narvan Danesh Publications. (In Persian)
Goldstein, A. H. 1995. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram-negative bacteria. Biology and Agriculture and Horticulture, 12, 185–193. https://doi.org/10.1080/01448765.1995.9754736.
He, D., and Wan, W. 2021. Phosphate-solubilizing bacterium Acinetobacter pittii gp-1 affects rhizosphere bacterial community to alleviate soil phosphorus limitation for the growth of soybean Glycine max. Frontiers in Microbiology, 12, 737116. https://doi.org/10.3389/fmicb.2021.737116.
Hou, E., Chen, C., Luo, Y., Zhou, G., Kuang, Y., Zhang, Y. and Wen, D. 2018. Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344–3356. https://doi.org/10.1111/gcb.14093.
Hussain, M., Asgher, Z., Tahir, M., Ijaz, M., Shahid, M., Ali, H., and Sattar, A. 2016. Bacteria in combination with fertilizers improve growth, productivity, and net returns of wheat Triticum aestivum L.. Pakistan Journal of Agricultural Sciences, 53, 633–645. https://doi.org/10.21162/PAKJAS/16.4901.
Iftikhar, A., Farooq, R., Akhtar, M., Khalid, H., Hussain, N., Ali, Q., and Ali, D. 2024. Ecological and sustainable implications of phosphorous-solubilizing microorganisms in soil. Discover Applied Sciences, 62, 33.
Izydorczyk, G., Saeid, A., Mironiuk, M., Witek-Krowiak, A., Kozioł, K., Grzesik, R., and Chojnacka, K. 2022. Sustainable method of phosphorus biowaste management to innovative biofertilizers: A solution for circular economy of the future. Sustainable Chemistry and Pharmacy, 27, 100634.
Khoshru, B., Nosratabad, A. F., Mitra, D., Chaithra, M., Danesh, Y. R., Boyno, G., Chattaraj, S., Priyadarshini, A., Anđelković, S., Pellegrini, M., and Guerra-Sierra, B. E. 2023. Rock phosphate solubilizing potential of soil microorganisms: advances in sustainable crop production. Bacteria, 22, 98-115.
Khosravi, H. 2016. Evaluation of some physiological characteristics of Rhizobium leguminosarum bv. viciae native to soils of Iran. Journal of Cellular and Molecular Researches, 284: 513-523.
Khosravi, H., Samar, S.M.; Fallahi, E.; Davoodi H.; Shahabian, M. 2009. Inoculation of 'Golden Delicious' apple trees on M9 Rootsto14ck with Azotobacter improves nutrient uptake and growth Indices. Journal of Plant Nutrition, 32: 946–953.
Kim, Y. H., Bae, B., and Choung, Y. K. 2005. Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. Journal of Bioscience and Bioengineering, 99, 23–29. https://doi.org/10.1263/jbb.99.23.
Krishnaraj, P. U., and Goldstein, A. H. 2001. Cloning of a Serratia marcescens DNA fragment that induces quinoprotein glucose dehydrogenase-mediated gluconic acid production in Escherichia coli in the presence of stationary phase Serratia marcescens. FEMS Microbiology Letters, 205, 215–220. https://doi.org/10.1016/S0378-10970100472-4.
Kumar, C., Yadav, K., Archana, G., and Kumar, G. N. 2013. 2-ketogluconic acid secretion by the incorporation of Pseudomonas putida KT 2440 gluconate dehydrogenase gad operon in Enterobacter asburiae PSI3 improves mineral phosphate solubilization. Current Microbiology, 67, 388–394. https://doi.org/10.1007/s00284-013-0372-z.
Kumawat, K. C., Singh, I., Nagpal, S., Sharma, P., Gupta, R. K., and Sirari, A. 2022. Coinoculation of indigenous Pseudomonas oryzihabitans and Bradyrhizobium sp. modulates the growth, symbiotic efficacy, nutrient acquisition, and grain yield of soybean. Pedosphere, 32, 438–451. https://doi.org/10.1016/S1002-01602160085-1.
Lambers, H. 2022. Phosphorus acquisition and utilization in plants. Annual Review of Plant Biology, 73, 17–42. https://doi.org/10.1146/annurev-arplant-102720-125738.
Li, H. Z., Bi, Q. F., Yang, K., Zheng, B. X., Pu, Q., and Cui, L. 2019. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by Single-Cell Raman Spectroscopy. Analytical Chemistry, 91, 2239–2246. https://doi.org/10.1021/acs.analchem.8b04820.
Li, Y., Liu, X., Hao, T., and Chen, S. 2017. Colonization and maize growth promotion induced by phosphate-solubilizing bacterial isolates. International Journal of Molecular Sciences, 18, 1253. https://doi.org/10.3390/ijms18071253.
Liang, J. L., Liu, J., Jia, P., Yang, T. T., Zeng, Q. W., Zhang, S. C., Liao, B., Shu, W. S., and Li, J. T. 2020. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME Journal, 14, 1600–1613. https://doi.org/10.1038/s41396-020-0632-4.
Lidbury, I.D.E.A., Scanlan, D.J., Murphy, A.R.J., Christie-Oleza, J.A., Aguilo-Ferretjans, M.M., Hitchcock, A., and Daniell, T.J. 2022. A widely distributed phosphate-insensitive phosphatase presents a route for rapid organophosphorus remineralization in the biosphere. Proceedings of the National Academy of Sciences of the United States of America, 119, e2118122119. https://doi.org/10.1073/pnas.2118122119.
Liu, C., Mou, L., Yi, J., Wang, J., Liu, A., and Yu, J. 2019. The Eno gene of Burkholderia cenocepacia strain 71-2 is involved in phosphate solubilization. Current Microbiology, 765, 495–502. https://doi.org/10.1007/s00284-019-01642-7.
Lu, Y., Gao, Y., Nie, J., Liao, Y., and Zhu, Q. 2021. Substituting chemical P fertilizer with organic manure: effects on double-rice yield, phosphorus use efficiency, and balance in subtropical China. Scientific Reports, 11, 8629. https://doi.org/10.1038/s41598-021-87851-2.
Luduena, L. M., Anzuay, M. S., Magallanes-Noguera, C., Tonelli, M. L., Ibanez, F. J., Angelini, J. G., Fabra, A., McIntosh, M., and Taurian, T. 2017. Effects of P limitation and molecules from peanut root exudates on pqqE gene expression and pqq promoter activity in the phosphate-solubilizing strain Serratia sp. S119. Research in Microbiology, 168, 710–721. https://doi.org/10.1016/j.resmic.2017.07.001.
Mahanta, D., Rai, R. K., Dhar, S., Varghese, E., Raja, A., and Purakayastha, T. J. 2018. Modification of root properties with phosphate-solubilizing bacteria and arbuscular mycorrhiza to reduce rock phosphate application in soybean-wheat cropping system. Ecological Engineering, 111, 31–43. https://doi.org/10.1016/j.ecoleng.2017.11.008.
Mawarda, P. C., Roux, X. L., van Elsas, J. D., and Salles, J. F. 2020. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry, 148, 107874. https://doi.org/10.1016/j.soilbio.2020.107874.
Monds, R. D., Newell, P. D., Schwartzman, J. A., and O’Toole, G. A. 2006. Conservation of the Pho regulon in Pseudomonas fluorescens Pf0-1. Applied and Environmental Microbiology, 723, 1910–1924. https://doi.org/10.1128/AEM.72.3.1910-1924.2006.
Munir, I., Bano, A., and Faisal, M. 2019. Impact of phosphate-solubilizing bacteria on wheat Triticum aestivum in the presence of pesticides. Brazilian Journal of Biology, 79, 29–37. https://doi.org/10.1590/1519-6984.172213.
Ohtake, H., Kato, J., Kuroda, A., Taguchi, K., and Sakai, Y. 1996. Chemotactic signal transduction in Pseudomonas aeruginosa. In T. Nakazawa, K. Furukawa, D. Hass, and S. Silver Eds., Molecular Biology and Biotechnology pp. 188–194. American Society for Microbiology, Washington DC.
Park, J.H., Bolan, N., Megharaj, M., and Naidu, R. 2011. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. Journal of Hazardous Materials, 185, 829–836. [https://doi.org/10.1016/j.jhazmat.2010.09.095]https://doi.org/10.1016/j.jhazmat.2010.09.095
Pikovskaya, R.I. 1948. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiology, 17, 362–370.
Prietzel, J., Harrington, G., Hausler, W., Heister, K., Werner, F., and Klysubun, W. 2016. Reference spectra of important adsorbed organic and inorganic phosphate binding forms for soil P speciation using synchrotron-based K-edge XANES spectroscopy. Journal of Synchrotron Radiation, 23, 532–544. [https://doi.org/10.1107/S1600577515023085]https://doi.org/10.1107/S1600577515023085
Priyam, A., Das, R.K., Schultz, A., and Singh, P.P. 2019. A new method for the biological synthesis of agriculturally relevant nanohydroxyapatite with elucidated effects on soil bacteria. Scientific Reports, 9, 15083. [https://doi.org/10.1038/s41598-019-51514-0]https://doi.org/10.1038/s41598-019-51514-0
Putker, F., Tommassen-van Boxtel, R., Stork, M., Rodríguez-Herva, J.J., Koster, M., and Tommassen, J. 2013. The type II secretion system Xcp of Pseudomonas putida is active and involved in the secretion of phosphatases. Environmental Microbiology, 15, 2658–2671. [https://doi.org/10.1111/1462-2920.12115]https://doi.org/10.1111/1462-2920.12115
Rafi, M.M., Krishnaveni, M.S., and Charyulu, P. 2019. Phosphate-solubilizing microorganisms and their emerging role in sustainable agriculture. In V. Buddolla Ed., Recent Developments in Applied Microbiology and Biochemistry pp. 223–233. [https://doi.org/10.1016/B978-0-12-816328-3.00017-9]https://doi.org/10.1016/B978-0-12-816328-3.00017-9
Rawat, P., Sharma, A., Shankhdhar, D., and Shankhdhar, S.C. 2022. Improvement of phosphorus uptake, phosphorus use efficiency, and grain yield of upland Oryza sativa L. in response to phosphate-solubilizing bacteria blended with phosphorus fertilizer. Pedosphere, 32, 752–763. [https://doi.org/10.1016/j.pedsph.2022.06.005]https://doi.org/10.1016/j.pedsph.2022.06.005
Rezaei, H. 2017. Investigating the changes of chemical characteristics of soil in soil quality monitoring research bases. Final report of the research project. Publication No. 54677. Soil and Water Research Institute, Karaj. Iran.
Richardson, A.E., and Simpson, R.J. 2011. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiology, 156, 989–996. [https://doi.org/10.1104/pp.111.175448]https://doi.org/10.1104/pp.111.175448
Roberts, T.L., and Johnston, A.E. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycling, 105, 275–281. [https://doi.org/10.1016/j.resconrec.2015.09.013]https://doi.org/10.1016/j.resconrec.2015.09.013
Robinson, W.D., Park, J., Tran, H.T., del Vecchio, H.A., Ying, S., Zins, J.L., Patel, K., McKnight, T.D., and Plaxton, W.C. 2012. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana. Journal of Experimental Botany, 63, 6531–6542. [https://doi.org/10.1093/jxb/ers309]https://doi.org/10.1093/jxb/ers309
Rodriguez, F., Lillington, J., Johnson, S., Timmel, C.R., Lea, S.M., and Berks, B.C. 2014. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. Journal of Biological Chemistry, 289, 30889–30899. [https://doi.org/10.1074/jbc.M114.604892]https://doi.org/10.1074/jbc.M114.604892
Rodríguez, H., Fraga, R., Gonzalez, T., and Bashan, Y. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil, 287, 15–21. [https://doi.org/10.1007/s11104-006-9056-9]https://doi.org/10.1007/s11104-006-9056-9.
Rodríguez, H., Gonzalez, T., and Selman, G. 2001. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. Journal of Biotechnology, 84, 155–161. [https://doi.org/10.1016/s0168-16560000347-3]https://doi.org/10.1016/s0168-16560000347-3
Saikia, J., Sarma, R.K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V.K., and Saikia, R. 2018. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8, 3560. [https://doi.org/10.1038/s41598-018-21921-w]https://doi.org/10.1038/s41598-018-21921-w
Sarikhani, M. R., Khoshru, B., and Oustan, S. 2016. Efficiency of some bacterial strains in potassium release from mica and phosphate solubilization under in vitro conditions. Geomicrobiology journal, 339, 832-838.
Sarikhani, M.R., Khoshru, B., and Greiner, R. 2019. Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World Journal of Microbiology and Biotechnology, 35, 1-10.
Sebastian, M., and Ammerman, J.W. 2009. The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. The ISME Journal, 3, 563–572. [https://doi.org/10.1038/ismej.2009.10]https://doi.org/10.1038/ismej.2009.10
Sharma, S.B., Sayyed, R.Z., Trivedi, M.H., and Gobi, T.A. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus, 2, 587. [https://doi.org/10.1186/2193-1801-2-587]https://doi.org/10.1186/2193-1801-2-587
Shen, Y.Q., Bonnot, F., Imsand, E.M., Rosefigura, J.M., Sjolander, K., and Klinman, J.P. 2012. Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry, 51, 2265–2275. [https://doi.org/10.1021/bi201763d]https://doi.org/10.1021/bi201763d
Singh, A., Parmar, N., and Kuhad, R.C. 2011. Phosphate-solubilizing microorganisms. In A. Singh, and N. Parmar Eds., Soil Biology, Bioaugmentation, Biostimulation and Biocontrol Volume 108 Chapter 4, pp. 653–684. [https://doi.org/10.1007/978–3-642–19769-7_4]https://doi.org/10.1007/978–3-642–19769-7_4
Smil, K.V. 2014. Phosphorus in the environment: Natural flows and human interferences. Annual Review of Energy and the Environment, 25, 53–88. [https://doi.org/10.1146/annurev.energy.25.1.53]https://doi.org/10.1146/annurev.energy.25.1.53
Soumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., and Kouisni, L. 2021. Efficacy of phosphate solubilizing actinobacteria to improve rock phosphate agronomic effectiveness and plant growth promotion. Rhizosphere, 17. [https://doi.org/10.1016/j.rhisph.2020.100284]https://doi.org/10.1016/j.rhisph.2020.100284
Suhag, M. 2016. Potential of biofertilizers to replace chemical fertilizers. International Advanced Research Journal in Science, Engineering and Technology, 35, 163-167.
Tian, J., Ge, F., Zhang, D., Deng, S., and Liu, X. 2021. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology Basel, 10, 158. [https://doi.org/10.3390/biology10020158].
Tovilla-Coutino, D.B., Momany, C., and Eiteman, M.A. 2020. Engineered citrate synthase alters acetate accumulation in Escherichia coli. Metabolic Engineering, 61, 171–180. [https://doi.org/10.1016/j.ymben.2020.06.006]https://doi.org/10.1016/j.ymben.2020.06.006
Valverde, A., Burgos, A., Fiscella, T., Rivas, R., Vel´azquez, E., Rodríguez-Barrueco, C., Cervantes, E., Chamber, M., and Igual, J.M. 2006. Differential effects of coinoculations with Pseudomonas jessenii ps06 a phosphate-solubilizing bacterium and Mesorhizobium ciceri c-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant and Soil, 287, 43–50. [https://doi.org/10.1007/978-1-4020-5765-6_5]https://doi.org/10.1007/978-1-4020-5765-6_5
Vikram, A., Alagawadi, A.R., and Krishnaraj, P.U. 2007. Transconjugation studies in Azospirillum sp. negative to mineral phosphate solubilization. World Journal of Microbiology and Biotechnology, 23, 1333–1337. [https://doi.org/10.1007/s11274-007-9365-z]https://doi.org/10.1007/s11274-007-9365-z.
Vinci, G., Cozzolino, V., Mazzei, P., Monda, H., Savy, D., Drosos, M., and Piccolo, A. 2018. Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant and Soil, 429, 437–450. [https://doi.org/10.1007/s11104-018-3701-y]https://doi.org/10.1007/s11104-018-3701-y
Wagh, J., Shah, S., Bhandari, P., Archana, G., and Kumar, N. 2014. Heterologous expression of pyrroloquinoline quinone pqq gene cluster confers mineral phosphate solubilization ability to Herbaspirillum seropedicae Z67. Applied Microbiology and Biotechnology, 98, 5117–5129. [https://doi.org/10.1007/s00253-014-5610-1]https://doi.org/10.1007/s00253-014-5610-1
Walpola, B.C., and Yoon, M.H. 2012. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6, 6600–6605. [https://doi.org/10.5897/AJMR12.889]https://doi.org/10.5897/AJMR12.889
Wang, Q., Xiao, C., Feng, B., and Chi, R. 2020. Phosphate rock solubilization and the potential for lead immobilization by a phosphate-solubilizing bacterium Pseudomonas sp.. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 55, 411–420. [https://doi.org/10.1080/10934529.2019.1704134]https://doi.org/10.1080/10934529.2019.1704134
Wanner, B.L. 1996. Phosphorus assimilation and control of the phosphate regulon. Escherichia coli Salmon: Cellular and Molecular Biology, 41, 1357–1381.
Wolff, J., Hofmann, D., Koch, M., Bol, R., Schnepf, A., and Amelung, W. 2020. Bioavailability and accessibility of subsoil allocated 33P-labelled hydroxyapatite to wheat under different moisture supply. Scientific Reports, 10, 17140. [https://doi.org/10.1038/s41598-020-74225-3]https://doi.org/10.1038/s41598-020-74225-3
Yao, Q., Li, Z., Song, Y., Wright, S.J., Guo, X., Tringe, S.G., Tfaily, M.M., Paša-Tolić, L., Hazen, T.C., Turner, B.L., Mayes, M.A., and Pan, C. 2018. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nature Ecology and Evolution, 2, 499–509. [https://doi.org/10.1038/s41559-017-0463-5]https://doi.org/10.1038/s41559-017-0463-5
Zaidi, A., Ahmad, E., and Khan, M.S. 2014. Role of phosphate-solubilizing microbes in the management of plant diseases. In M. Khan, A. Zaidi, and J. Musarrat Eds., Phosphate Solubilizing Microorganisms pp. 225–256.
Zhang, J., Guo, T., Tao, Z., Wang, P., and Tian, H. 2020. Transcriptome profiling of genes involved in nutrient uptake regulated by phosphate-solubilizing bacteria in pepper Capsicum annuum L.. Plant Physiology and Biochemistry, 156, 611–626. [https://doi.org/10.1016/j.plaphy.2020.10.003]https://doi.org/10.1016/j.plaphy.2020.10.003