Studying the effect of modification of sugarcane bagasse and date palm biochar by hydrogen peroxide on some of their physicochemical properties

Document Type : Original Article

Authors

1 Department of Soil Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

2 Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Department of Soil Science, Agriculture Faculty, Agricultural Sciences and Natural Resources University of Khuzestan, Iran

4 Associate Professor, Department of Soil Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

10.30466/asr.2025.55213.1843

Abstract

The use of biochar as a porous material rich in carbon has been noticed in agriculture and environment. If it is economical, the properties of biochar can be improved by using physical and chemical modification methods. This study was conducted with the aim of studying and investigating the effect of modification of sugarcane bagasse and date palm biochars with hydrogen peroxide on some of their physical and chemical properties. The obtained results showed that modification of biochar with hydrogen peroxide improves the quality of biochars. Biochar modification causes an increase in cation exchange capacity, water holding capacity, functional groups (with oxygen), percentage of moisture, percentage of oxygen, percentage of hydrogen, reduction of total concentration of nutrients, percentage of nitrogen, percentage of sulfur, percentage of ash, EC, pH, Carbon stability percentage (fixed carbon), specific surface area, volatile matter and carbon percentage and the increase of atomic ratios were investigated (oxygen to carbon, nitrogen to carbon in date palm biochar treatment and hydrogen to carbon). The specific level of the unmodified sugarcane bagasse biochar was the highest and the lowest value belonged to the modified date palm biochar. Scanning electron microscope images (the modified sugarcane bagasse also showed better quality in terms of pores and porosity than the other investigated biochars) showed the best characteristics (amorphous structure and higher porosity) in the modified sugarcane bagasse biochar treatment. The highest improvement of the parameters was related to the modified sugarcane bagasse biochar treatment, which is suggested as the best treatment (product). Based on the obtained results it can be concluded that the modification of biochar with hydrogen peroxide can improve the quality of biochar and have a better effect on the existing processes in the environment and agriculture as well as the soil and the issue of environmental pollution management.

Keywords

Main Subjects


Referrence
Agrafioti E., Kalderis D., and Diamadopoulos E. 2014. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. Journal of Environmental Management, 146: 444- 450. https://doi.org/10.1016/j.jenvman.2014.07.029.
Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E. and Ok, Y. S. 2012. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource technology, 118: 536-544.  doi: 10.1016/j.biortech.2012.05.042.
Ahmed M.B., Zhou J.L., Ngo H.H., Guo W., and Chen, M. 2016. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource Technology, 214: 836-851. https://doi.org/10.1016/j.biortech.2016.05.057.
Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M. and Usman, A. R. 2013. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresource Technology, 131: 374-379.‏ https://doi.org/10.1016/j.biortech.2012.12.165.
Beheshti, M. and Alikhani, H. A. 2015. Changes in the quality of biochar produced from wheat straw and stubble during the slow pyrolysis process at different temperatures. Agricultural knowledge and sustainable production, 26 (2): 189-201.
Bushra, B. and Remya, N. 2024. Biochar from pyrolysis of rice husk biomass—characteristics, modification and environmental application. Biomass Conversion and Biorefinery14(5): 5759-5770.
Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M. and Ro, K. S. 2012. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107: 419-428.‏ https://doi.org/10.1016/j.biortech.2011.11.084.
Chan, K. Y. and Xu, Z. 2012. Biochar: nutrient properties and their enhancement. In Biochar for environmental management (pp. 99-116). Routledge. ISBN: 978-1-84407-658-1.
Chen, B., Zhou, D. and Zhu, L. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental science and Technology, 42(14): 5137-5143.‏ https://doi.org/10.1021/es8002684.
Chen, T., Luo, L., Deng, S., Shi, G., Zhang, S., Zhang, Y., Deng, O., Wang, L., Zhang, J. and Wei, L. 2018. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure. Bioresource technology, 267: 431-437. doi: 10.1016/j.biortech.2018.07.074.
Chintala, R., Mollinedo, J., Schumacher, T.E., Papiernik, S.K., Malo, D.D., Clay, D.E., Kumar, S. and
Gulbrandson, D.W. 2013. Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and
Mesoporous Materials
, 179: 250-257. doi:10.1016/j.micromeso.2013.05.023. 
Dong, H., Zhang, C., Hou, K., Cheng, Y., Deng, J., Jiang, Z., Tang, L. and Zeng, G. 2017. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Separation and Purification Technology, 188: 188-196. https://doi.org/10.1016/j.seppur.2017.07.033.
El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., immerman A.R., Ahmad M., Shaheen S.M. and Ok Y.S. 2019. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337: 536-554. https://doi.org/10.1016/j.jenvman.2019.02.044.
Environmental Protection Organization, 2017.
Fan, S., Tang, J., Wang, Y., Li, H., Zhang, H., Tang, J., Wang, Z. and Li, X. 2016. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: Kinetics, isotherm, thermodynamic and mechanism. Journal of Molecular Liquids, 220: 432-441. https://doi.org/10.1016/j.molliq.2016.04.107.
Fierro V., Muñiz G., Basta A.H., El-Saied H. and Celzard A. 2010. Rice straw as precursor of
activated carbons: Activation with ortho-phosphoric acid. Journal of Hazardous Materials, 181(1-3): 27-34. https://doi.org/10.1016/j.jhazmat.2010.04.062.
Gan, C., Liu, Y., Tan, X., Wang, S., Zeng, G., Zheng, B., Li, T., Jiang, Z. and Liu, W. 2015. Effect of porous zinc–biochar nanocomposites on Cr(vi) adsorption from aqueous solution. RSC Advances, 5 (44): 35107–35115. https://doi.org/10.1039/C5RA04416B.
Ghezzehei T.A., Sarkhot D.V., and Berhe A.A. 2014. Biochar can be used to capture essential
nutrients from dairy wastewater and improve soil physico-chemical properties. Solid Earth, 5(2): 953-962. https://doi.org/10.5194/se-5-953-2014.
Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W., Scott, J.H.J. and Joy, D.C., 2017. Scanning electron microscopy and X-ray microanalysis. springer. https://link.springer.com/book/10.1007/978-1-4939-6676-9.
Gray, M., Johnson, M. G., Dragila, M. I. and Kleber, M. 2014. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61: 196-205.‏ https://doi.org/10.1016/j.biombioe.2013.12.010.
Huff, M.D. and Lee, J.W. 2016. Biochar-surface oxygenation with hydrogen peroxide. Journal of environmental management, 165 :17-21. https://doi: 10.1016/j.jenvman.2015.08.046.
Ippolito, J.A., Spokas, K.A., Novak, J.M., Lentz, R.D. and Cantrell, K.B. 2015. Biochar elemental composition and factors influencing nutrient retention. emoval of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210: 26-32. https://doi: 10.1016/j.jenvman.2015.08.046.
Jung C., Heo J., Han J., Her N., Lee S.J., Oh J., Ryu J. and Yoon Y. 2013. Hexavalent chromium removal by various adsorbents: powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology, 106: 63-71. https://doi:10.1016/j.seppur.2012.12.028.
 Kagazchi, T. and Maddi Yeganeh, M. 2004. Investigating the effect of the type of raw material on the properties of activated carbon. The 9th National Congress of Chemical Engineering of Iran. Iran University of Science and Technology, December 3-5, 2013.
Kameyama, K., Miyamoto, T., Shiono, T. and Shinogi, Y. 2012. Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. Journal of Environmental Quality, 41(4): 1131-1137. https://doi: 10.2134/jeq2010.0453.
Khajavi-Shojaei, S., Moezzi, A., Norouzi Masir, M. and Taghavi, M. 2020. Characteristics of conocarpus wastes and common reed biochars as a predictor of potential environmental and agronomic applications. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-18.  doi: 10.1080/15567036.2020.1783396.
Khajovi Shojaei, Sh., Moezi, A. A., Nowrozi Masir, M. and Taqvi, M. 2021. Investigating the effect of different chemical and surface modification methods on the characteristics of biochars prepared from straw and corn residues. Applied Soil Research, 9 (2): 86-73.
Kwiatkowski, M. 2008. Application of fast multivariant identification technique of adsorption systems to analyze influence of production process conditions on obtained microporous structure parameters of carbonaceous adsorbents. Microporous Mesoporous Mater, 115 (3): 314–331. https://doi.org/10.1016/j.micromeso.2008.02.002.
Lehmann J. and Joseph S. 2009. Biochar for environmental management- an introduction. In: Lehmann J. and Joseph S. (Eds). Biochar for environmental management: Science and Technology. Earthscan, London, pp: 1–11. ISBN: 978-1-84407-658-1.
Lehmann J., and Joseph S. 2015. Biochar for environmental management: an introduction. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed. Earthscan from Routledge, London, pp: 1–1214. ISBN 9780367779184. Lehmann-Joseph/p/book/9780367779184.
Li, Y., Shao, J., Wang, X., Deng, Y., Yang, H. and Chen, H. 2014. Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels, 28 (8): 5119–5127. https://doi.org/10.1021/ef500725c.
Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad, J.O., Thies, J., Luizão, F.J., Petersen, J. and Neves, E.G. 2006. Black carbon increases cation exchange capacity in soils. Soil science society of America journal, 70(5): 1719-1730. https://doi:10.2136/sssaj2005.0383.
Liu, Z., Demisie, W. and Zhang, M. 2013. Simulated degradation of biochar and its potential environmental implications. Environmental pollution, 179: 146-152. https://doi.org/10.1016/j.envpol.2013.04.030.
Luo, J., Li, X., Ge, C., Müller, K., Yu, H., Huang, P., Li, J., Tsang, D.C., Bolan, N.S., Rinklebe, J. and Wang, H. 2018. Sorption of norfloxacin, sulfamerazine and oxytetracycline by KOH-modified biochar under single and ternary systems. Bioresource Technology, 263: 385-392. https://doi: 10.1016/j.biortech.2018.05.022.
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., and Lehmann, J. 2012. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48(3): 271-284.‏ http://dx.doi.org/10.1007/s00374-011-0624-7.
Shaaban, A., Se, S.M., Mitan, N.M.M. and Dimin, M.F. 2013. Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering, 68: 365-371. https://doi: 10.1016/j.proeng.2013.12.193.
Shen W., Li Z., and Liu Y. 2008. Surface chemical functional groups modification of porous carbon. Recent Patents on Chemical Engineering, 1(1): 27-40. https://doi: 10.2174/2211334710801010027.
Singh, B., Camps-Arbestain, M. and Lehmann, J. (Eds.). 2017. Biochar: a guide to analytical methods. Csiro Publishing.‏ ISBN 9781498765534.
Song, W. and Guo, M. 2012. Quality variation of poultry litter biochar generated at differenpyrolysis temperatures. Journal of analytical and applied pyrolysis, 94: 138-145. https://doi.org/10.1016/j.jaap.2011.11.018.
Song, X., Liu, H., Cheng, L. and Qu, Y. 2010. Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption. Desalination, 255(1-3): 78-83. https://doi: 10.1016/j.desal.2010.01.011.
Spokas, K. A., Koskinen, W. C., Baker, J. M. and Reicosky, D. C. 2009. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere. 77(4): 574-581. https://doi: 10.1016/j.chemosphere,2009.06.053.
Suárez-Hernández, L. and Barrera-Zapata, R. 2017. Morphological and physicochemical characterization of biochar produced by gasification of selected forestry species. Revista Facultad de Ingeniería, 26(46): 123-130. https://doi.org/10.19053/01211129.v26.n46.2017.7324.
Sun, C., Chen, T., Huang, Q., Wang, J., Lu, S. and Yan, J. 2019. Enhanced adsorption for Pb (II) and Cd (II) of magnetic rice husk biochar by KMnO 4 modification. Environmental Science and Pollution Research, 26: 8902-8913. https://doi: 10.1007/s11356-019-04321-z.
Takaya, C.A., Fletcher, L.A., Singh, S., Okwuosa, U.C. and Ross, A.B. 2016. Recovery of phosphate with chemically modified biochars. Journal of environmental chemical engineering, 4(1): 1156-1165. https://doi.org/10.1016/j.jece.2016.01.011.
Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y. and Yang, Z. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere, 125: 70–85. https://doi: 10.1007/s10163-017-0666-5.
Tomczyk, A. and Szewczuk-Karpisz, K. 2022. Effect of biochar modification by vitamin c, hydrogen peroxide or silver nanoparticles on its physicochemistry and tetracycline removal. Materials, 1515), p.5379. https://doi: 10.3390/ma15155379.
Uchimiya, M., Chang, S., Klasson, K.T. 2011. Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190: 432–441. https://doi.org/10.1016/j.jhazmat.2011.03.063.
Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A.S., El- Naggar, A.H. and
AlWabel, M.I. 2015. Chemically modified biochar produced from conocarpus waste increases NO 3removal from aqueous solutions. Environmental Geochemistry and Health, 38 (2): 511–521. https://doi: 10.1007/s10653-015-9736-6.
Vassilev, S. V., Baxter, D., Andersen, L. K. and Vassileva, C. G. 2010. An overview of the chemical composition of biomass. Fuel, 89(5): 913-933. https://doi.org/10.1016/j.fuel.2009.10.022.
Wang, Z., Zheng, H., Luo, Y., Deng, X., Herbert, S. and Xing, B. 2013. Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environmental pollution, 174: 289-296. https://doi: 10.1016/j.envpol.2012.12.003.
Weber, K. and Quicker, P. 2018. Properties of biochar. Fuel, 217: 240-261. https://doi.org/10.1016/j.fuel.2017.12.054.
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. and Ro, K.S. 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 200: 673-680. https://doi.org/10.1016/j.cej.2012.06.116.
Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R. and Ro, K.S. 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chemical Engineering Journal, 200: 673-680. https://doi.org/10.1016/j.cej.2012.06.116.
Yu H., Zou W., Chen J., Chen H., Yu Z., Huang J., Tang H., Wei X., and Gao B. 2019. Biochar amendment improves crop production in problem soils: A review. Journal of Environmental Management, 232: 8-21. doi: https://doi:10.1016/j.jenvman.2018.10.117.
Yuan, J. H. and Xu, R. K. 2011. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol. Soil Use and Management, 27(1): 110-115.‏ https://doi.org/10.1016/S1002-0160(11)60186-0.
Zafeer, M. K., Menezes, R. A., Venkatachalam, H. and Bhat, K. S. 2024. Sugarcane bagasse-based biochar and its potential applications: a review. Emergent Materials7(1), 133-161.
Zhang Y., Li Z., and Mahmood I.B. 2014. Recovery of NH4+ by corn cob produced biochars and its potential application as soil conditioner. Frontiers of Environmental Science and Engineering, 8(6): 825-834. https://doi: 10.1007/s11783-014-0682-9.
Zhang, M.M., Liu, Y.G., Li, T.T., Xu, W.H., Zheng, B.H., Tan, X.F., Wang, H., Guo, Y.M., Guo, F.Y. and Wang, S.F. 2015. Chitosan modification of magnetic biochar produced from Eichhornia crassipes for enhanced sorption of Cr (vi) from aqueous solution. RSC Advances. 5 (58): 46955–46964. https://doi.org/10.1039/C5RA02388B.
Zhao, B., O'Connor, D., Zhang, J., Peng, T., Shen, Z., Tsang, D. C. and Hou, D. 2018. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of cleaner production, 174: 977-987. https://doi:10.1016/j.jclepro.2017.11.