References
Akpa, S. I. C., Odeh, I. O. A., Bishop, T. F. A. and Hartemink, A. E. 2014. Digital mapping of soil particle-size fractions for Nigeria. Soil Science Society of America Journal, 78: 1953–1966.
Behrens, T., Schmidt, K., and Scholten, T .2008. An approach to removing uncertainties in nominal environmental covariates and soil class maps. In: Hartemink A., McBratney A. and Mendoca-Santos, M.L. (Eds.), Digital Soil Mapping with Limited Data. Springer, pp. 213–224.
Bishop T.F.A., Minasny B. and McBratney A.B. 2006. Uncertainty analysis for soil-terrain models. International Journal of Geographical Information Science, 20(2): 117–134.
Bouyoucos G.J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5): 464-465
Breiman L. 2001. Random forests. Machine Learning, 45(1): 5-32
Cressie N. and Kornak J. 2003. Spatial statistics in the presence of location error with an application to remote sensing of the environment. Statistical Science, 18(4): 436–456.
Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V. and Böhner, J. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development Discussions, (8): 2271-2312.
Gomez C., Drost, A.P.A. and Roger, J.M. 2015. Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR hyperspectral data. Remote Sensing of Environment, 156: 58-70.
Heuvelink G.B.M. 2014. Uncertainty quantification of Global Soil Map products. In: Global Soil Map Basis of the global spatial soil information system. Arrouays D., McKenzie N.J., Hempel J., Richer de-Forges A.C. and McBratney A.B., (eds). 335-340.
Heuvelink G.B.M. 1998. Error propagation in environmental modelling with GIS. Taylor and Francis, London. 144 pp.
Jensen, J.R. 2005. Introductory digital image processing: A remote sensing perspective, 3rd edition. Pearson Prentice Hall. 296-300, 301-321, 315-316.
Khosravani P., Baghernejad M., Moosavi A.A. and FallahShams S.R. 2024. Digital Mapping of Soil Texture Particles with Machine Learning Models and Environmental Covariates. Journal of Water and Soil, 37(6): 923-942. (In Persian)
Lagacherie P., McBratney A.B. and Volz, M. 2007. Digital soil mapping: An introductory perspective. Elsevier, Amsterdam.
Macmillan R.A. Jones, R.K., & McNabb, D.2004. Defining a hierarchy of spatial entities for environmental analysis and modeling using digital elevation models (DEMs). Computers, Environment and Urban Systems, 28:175-200.
Meinshausen N. 2006. Quantile regression forests. Journal of Machine Learning Research, 7: 983-999.
Nikou M. and Tziachris, P. 2022. Prediction and Uncertainty Capabilities of Quantile Regression Forests in Estimating Spatial Distribution of Soil Organic Matter. ISPRS International Journal of Geo-Information, 11: 130.
Poggio L., Gimona A. and Mark B. 2016. Bayesian spatial modelling of soil properties and their uncertainty: The example of soil organic matter in Scotland using R-INLA. Geoderma, 277: 69 - 82.
Ramcharan A., Hengl T., Nauman T., Brungard C., Waltman S., Wills S. and Thompson J. 2017. Soil Property and Class Maps of the Conterminous US at 100-meter Spatial Resolution based on a Compilation of National Soil Point Observations and Machine Learning. Soil Science Society of America Journal, 82(1):186-201
Rouse J.W., Hass R.H.J., Schell A. and Deering D.W. 1973. Monitoring vegetation systems in the Great Plains with ERTS. 3th ERTS Symposium. 10-14 Dec.Washington, DC., USA
Szatmári G. and Pásztor L. 2019. Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms. Geoderma, 337: 1329-1340.
Saurette D., Zhang Y., Ji W., Huq Easher T., Li H., Shi Z., Adamchuk V. and Biswas A. 2020. Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging. Geoderma, 366: 42-53.
Soil Science Division Staff. 2017. Soil survey manual. C. Ditzler, K. Scheffe, and H.C. Monger (Eds.). USDA Handbook 18. Government Printing Office, Washington, D.C.
Stumpf F., Schmidt K., Goebes P., Behrens T., Schönbrodt-Stitt S., Wadoux A., Xiang W. and Scholten T. 2017.Uncertainty-guided sampling to improve digital soil maps. Catena, 153: 30–38.
Teixeira D., Marques J., Silva S.D., Vasconcelos V., de Carvalho J.O., Martins E. and Pereira G. 2018. Mapping units based on spatial uncertainty of magnetic susceptibility and clay content. Catena, 164.
Theres L. and Rs S. 2022. Prediction of Soil Properties Using Quantile Regression Forest Machine Learning Algorithm – A Case Study of Salem and Rasipuram Block, Tamil Nadu, India. International Journal of Environment and Climate Change, 2530-2553.
Wadoux A.M.J.C., Minasny B. and McBratney A.B. 2020. Machine learning for digital soil mapping: Applications, challenges and suggested solutions. Earth-Science, 210: 33-59.
Wang D. Wang P., Cong W., & Wang P.2022. Calibrating probabilistic predictions of quantile regression forests with conformal predictive systems. Pattern Recognition Letters,156:2-3
Xiao J., Shen Y., Tateishi R. and Bayaer W. 2006. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. International Journal of Remote Sensing, 27: 2411–2422.