تخمین مکانی- زمانی شوری خاک با داده‌های نامطمئن و روش انتروپی حداکثر اریب در حاشیه غربی دریاچه ارومیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 رده بندی و تناسب اراضی

2 هیئت علمی

چکیده

پایش به هنگام شوری خاک براساس نمونه‌برداری‌های صحرایی، نیاز به زمان و هزینه زیادی دارند. بنابراین هرنوع روش مناسبی که بتواند منجر به کاهش هزینه‌ها شود، قدمی به سوی پایش پایدار شوری خاک در بلندمدت خواهد بود. هدف از انجام این تحقیق، استفاده از روش انتروپی حداکثر اریب و خطای حاصل از استفاده از داده‌های صحرایی در یک بازه زمانی، برای بهبود تخمین مکانی- زمانی شوری خاک در نقاطی بدون اندازه‌گیری‌های دقیق آزمایشگاهی بود. هدایت الکتریکی خاک در صحرا برای تمامی نمونه‌ها و در تمام دورهای نمونه‌برداری اندازه‌گیری گردید. اما اندازه‌گیری شوری خاک در آزمایشگاه تنها برای دورهای اول، دوم و پنجم انجام شد. بعداز کالیبراسیون داده‌های صحرایی با داده‌های آزمایشگاهی برای دو دور اول نمونه‌برداری، هیستوگرام باقی مانده‌ها محاسبه گردید و سپس واریانس باقی مانده‌ها به عنوان خطای مربوط به داده‌های نامطمئن، در تخمین مکانی- زمان شوری خاک در سایر بازه‌های زمانی استفاده گردید. نتایج حاصل از اعتبارسنجی مقادیر تخمینی شوری خاک نشان داد استفاده از مدل کالیبراسیون و خطای محاسبه شده برای دو دور اول نمونه‌برداری با مقادیر میانگین خطا و میانگین مربعات خطای برابر با 12/0- و 72/0، می‌تواند در تخمین مکانی شوری خاک در دور پنجم نمونه‌برداری نیز از اعتبار لازم برخوردار باشد. لذا، از مدل برازش شده در تخمین مکانی- زمانی شوری خاک در طی تمامی دورهای نمونه‌بردای استفاده گردید. نتایج نشان داد شوری خاک در طی بازه زمانی بین 1389-1395، افزایش قابل توجهی داشت و شوری ثانویه خاک در زمین‌های کشاورزی در حال اتفاق است. به طوری که میانگین شوری خاک در منطقه مطالعاتی از 56/4 در طی پائیز 1390 به 65/6 در طی پائیز 95 افزایش یافت. براساس نتایج حاصل از این تحقیق استفاده از داده‌های نامطمئن و روش انتروپی حداکثر اریب، با کاهش هزینه‌ها و زمان لازم برای آنالیزهای آزمایشگاهی امکان پایش پایدار مرز بین اراضی کشاورزی و شور را فراهم می‌آورد.

کلیدواژه‌ها


عنوان مقاله [English]

Spatio-temporal prediction of soil salinity using soft data and Bayesian maximum entropy method in western shores of Urmia Lake

چکیده [English]

Real-time monitoring of soil salinity changes is quite costly, so that sound methods which could improve the quality of the predictions would thus be a step towards an improved and sustainable salinity hazards monitoring system on the long run. The aim of this paper is to propose such a methodological framework, with an illustration based on the implication of the calculated error caused by field measurements in one time interval to improve spatiotemporal predictions of soil salinity where no laboratory measurements are available. Soil EC was measured in the field for all times series but only for the first, second and fifth data sets laboratory measurements were implemented. After calibrating field EC by laboratory measurements for the first two datasets, histograms of residuals were calculated and then variance of the residuals were taken into account as error and were used in soil salinity prediction using Bayesian Maximum Entropy method (BME) in other time series. Results from validation of the predicted values for soil salinity revealed that implementation of calibration line and the calculated error for one time interval in BME equations could successfully improve soil salinity prediction during other time intervals with validation results of ME and MSE equal to -0.12 and 0.72 for 5th dataset. Therefore, calibration line based on first two datasets was applied in spatiotemporal prediction of soil salinity in all-time series. Results showed that soil salinity has increased during time interval of 2010-2016 and secondary salinization has been occurring in agricultural lands. Mean soil salinity has increased from 4.56 dS/m in 2011 to 6.65 in 2016. The reduced need for constant calibration of field measured data and number of soil samples using soft data and BME method will make soil salinity monitoring possible where there is a great need for careful monitoring.

کلیدواژه‌ها [English]

  • error prediction
  • field data
  • validation
  • electrical conductivity
References

Acosta J.A., Faz A., Jansen B., Kalbitz K., and Martinez-Martinez S. 2011. Assessment of salinity status in intensively cultivated soils under semiarid climate, Murcia, SE Spain. Journal of Arid Environments, 75: 1056-1066.

Brus D.J., Bogaert P., and Heuvelink G.B.M. 2008. Bayesian maximum entropy prediction of soil categories using a traditional soil map as soft information. European Journal of Soil Science, 59(2): 166-177.

Christakos G. 2002. On the assimilation of uncertain physical knowledge bases: Bayesian and non-Bayesian techniques. Advances in Water Research, 25(8-12): 1257-1274.

Christakos G. 1990. A Bayesian/maximum-entropy view to the spatial estimation problem. Mathematical Geology, 22(7): 763-777.

Christakos G., and Serre M.L. 2000. BME analysis of spatiotemporal particulate matter distributions in North Carolina. Atmospheric Environments, 34: 3393-3406.

Corwin D.L., Lesch S.M. 2003a. Application of soil electrical conductivity to precision agriculture: theory, principles, and guidelines. Agronomy Journal, 95 (3): 455-471.

Corwin D.L., Lesch S.M., Shouse P.J., Soppe R., and Ayars J.E. 2003b. Identifying soil properties that influence cotton yield using soil sampling directed by apparent soil electrical conductivity. Agronomy Journal, 95 (2): 352-364.

De Clercq W.P., Van Meirvenne M., and Fey M.V. 2009. Prediction of the soil-depth salinity-trend in a vineyard after sustained irrigation with saline water. Agricultural Water Management, 96: 395-404.

Doolittle J.A., Sudduth K.A., Kitchen N.R., and Indorante S.J. 1994. Estimating depths to claypans using electromagnetic induction methods. Journal of Soil and Water Conservation, 49(6): 572-575.

D,Or D., and Bogaert P. 2003. Continuous-valued map reconstruction with the Bayesian Maximum Entropy. Geoderma, 112: 169-178.

Douaik A., Van Meirvenne M., and Toth T. 2005. Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data. Geoderma, 128: 234-248.

Douaik A., Van Meirvenne M., and Toth T. 2004. Spatio-Temporal Kriging of Soil Salinity Rescaled from Bulk Soil Electrical Conductivity. In: Sanchez Vila X, Carrera J, and Gomez-Hernandez J (Eds). GeoEnv IV: Geostatistics for Environmental Applications. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 413-424.

Giordano R., Liersch S., Vurro M., and Hirsch D. 2010. Integrating local and technical knowledge to support soil salinity monitorinf in the Amudarya river basin. Journal of Environmental Management, 91: 1718-1729.

Goovaerts P., and Journel A.G. 1995. Integrating soil map information in modeling the spatial variation of continuous soil properties. Europian Journal of Soil Science, 46(3): 397-414.

Hamzehpour N., and Eghbal M.K. 2016. Spatiotemporal prediction of soil salinity boundary using Kriging with measurment errors. Ecology, Environment and Conservation, 22(3): 1085-1094.

Hamzehpour N., Eghbal M.K., Toomanian N., Bogaert P., and Oskoui R.S. 2015. Uncertainty Assessment of the Soil Salinity Boundary in Uromia Plane Using Bayesian Maximum Entropy Method. Soil Management and Sustainable Production, 5(2): 131-147. (In Persian)

Hamzehpour N., Eghbal M.K., Bogaert P., Toomanian N., and Oskoui R.S. 2013. Spatial prediction of soil salinity using kriging with measurement errors and probabilistic soft data. Arid Land Research and Management, 27 (2): 128-139.

Hasanzadeh E., Zarghami M., and Hassanzadeh Y. 2011. Determining the main factos in declining the Urmia Lake level by using System Dynamics Modeling. Water Resources Management, 26(1): 129-145.

Heuvelink G.B.M., and Bierkens M.F.P. 1992. Combining soil maps with interpolations from point observations to predict quantitative soil properties. Geoderma, 55(1-2): 1-15.

Johnson C.K., Doran J.W., Duke H.R., Weinhold B.J., Eskridge K.M., and Shanahan J.F. 2001. Field-scale electrical conductivity mapping for delineating soil condition. Soil Science Society of American Journal, 65: 1829-1837.

Kachanoski R.G., Gregorich E.G., and Van-Wesenbeeck I.J. 1988. Estimating spatial variations of soil water content using noncontacting electromagnetic inductive methods. Canadian Journal of Soil Science, 68:715-722.

Marlet S., Bouksila F., and Bahri A. 2009. Water and salt balance at irrigation scheme scale: A comprehensive approach for salinity assessment in a Saharan oasis. Agricultural Water Managements, 96: 1311-1322.

Rhoades J.D. 1996. Salinity: electrical conductivity and total dissolved salts. In: Sparks D.L. (Ed.), Methods of Soil Analysis, Part 3-Chemical Methods. Book Series No. 5. Soil Science Society of America, Madison, WI, USA, pp. 417-435.

Scudiero E., Skaggs T.H., and Corwin D.L. 2015. Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance. Remote Sensing of Environment, 169: 335-343.

Serre M.L., and Christakos G. 1999. Modern geostatistics: computational BME in the light of uncertain physical knowledge-the Equus Beds study. Stochastic Environmental ResearchandRisk Assessment, 13: 1-26.

Stein A., Corsten L.C.A. 1991. Universal kriging and cokriging as a regression procedure. Biometrics, 47: 575-587.

Sudduth K.A., Kitchen N.R., Hughes D.F., Drummond S.T. 1995. Electromagnetic induction sensing as an indicator of productivity on claypan soils. In: Robert PC, Rust, RH, Larson WE. (Eds.), Proceedings of the Second International Conference on Site-specific Management for Agricultural Systems. American Society of Agronomy, Crop Science Society, Madison, WI, USA, pp. 671-681.

Taghizadeh-Mehrjardi, R., Minasny B., Sarmadian F., and Malone B.P. 2014. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213: 15-28.

Williams B.G., and Hoey D. 1987. The use of electromagnetic induction to detect the spatial variability of the salt and clay contents of soils. Australian Journal of Soil Research, 25: 21-27.

Zheng Zh., Zhang F., Ma F., Chai X., Zhu Zh., Shi J., and Zhang Sh. 2009. Spatiotemporal changes in soil salinity in a drip-irrigated field. Geoderma, 149: 243-248.