برآورد عامل فرسایش پذیری خاک مدل USLE و ارتباط آن با برخی از ویژگی‌های زمین منظر در بخشی از حوضه آبخیز نازلو چای ارومیه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 فارغ التحصیل کارشناسی ارشد گروه علوم خاک دانشگاه ارومیه

2 هیات علمی گروه علوم خاک دانشگاه ارومیه

چکیده

فرسایش‌پذیری خاک، خصوصیتی پویاست که با زمان، رطوبت خاک، شخم، فعالیت حیوانات و فاکتورهای شیمیایی و زیستی تغییر می‌کند، در نتیجه افزایش آن، تهدیدی عمده برای پایداری و ظرفیت تولید زمین‌های کشاورزی محسوب می‌شود. این عامل که در مدل USLE به‌صورت فاکتور K یا عامل فرسایش‌پذیری نشان داده می‌شود پارامتری اثرگذار در فرسایش آبی است و تابعی از توزیع اندازه ذرات، ماده آلی، ساختمان و نفوذپذیری است. در پژوهش حاضر توزیع مکانی مقادیر فاکتور فرسایش‌پذیری مدل USLE، در بخشی از حوزه آبخیز نازلو چای ارومیه با استفاده از زمین‌آمار مورد بررسی قرار گرفته است. بدین منظور نمونه‌برداری از خاک با فواصل منظم یک کیلومتری و در 64 نقطه انجام و بر اساس رابطه K در مدل USLE، مقدار آن محاسبه شد. نتایج نشان دادکه مقدار عامل K در محدوده 079/0 – 029/0 تن ساعت بر مگا ژول میلی‌متر متغیر است. تغییرات مکانی فاکتور K از مدل نمایی تبعیت نموده و استحکام فضایی متوسطی دارد. خاک‌های منطقه از نظر فرسایش‌پذیری در کلاس‌های فرسایش‌پذیری کم و خیلی کم قرار دارند. مقادیر کمّی فرسایش‌پذیری در کلاس‌های شیب مختلف متفاوت بوده و حداکثر آن در کلاس شیب 5 تا 8 درصد که مربوط به کاربری دیم می‌باشند مشاهده شد. همچنین مقادیر K در گروه‌های هیدرولوژیکی مختلف، متفاوت بوده و در گروه A کمترین مقدار و در گروه D بیشترین مقدار آن مشاهده شد. به‌نظر می‌رسد که مدیریت ناصحیح خاک در اراضی شیب‌دار و دیم، یکی از عوامل اصلی تخریب خاک و در نتیجه افزایش عامل فرسایش‌پذیری می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Soil erodibility factor of USLE model and its relationship with landscape features in some parts of Nazzlo-Chay basin, Iran

نویسندگان [English]

  • Kamal Khosraviaqdam 1
  • Hamid Reza Momtaz 2
  • Farrokh Asadzadeh 2
2 Associate Professor, Department of Soil Science, Faculty of Agriculture, Urmia University
چکیده [English]

Soil erodibility is a dynamic aspect that varies over time and with plough, animal’s activities and biochemical factors resulting in a major environmental threat to the sustainability and productive capacity of agricultural areas. In Universal Soil Loss Equation (USLE), soil erodibility factor (K-factor), as an effective parameter in water erosion is a function of particle size distribution, organic matter, structure and permeability. In the present study, the spatial distribution of the amount of K-factor was investigated in the Nazlou Chai Watershed in Urmia, West Azerbaijan using geostatistics. Then soil samples were taken from 1 km by 1 km square grid over 64 location, and the amount of K-factor was calculated in the USLE model. The results showed that K-factor was ranged from 0.029 to 0.079 (T h MJ-1 mm -1). The spatial variation of K-factor was best fit to the exponential model and showed a moderate spatial structure. The studied soils were categorized in low and very low erodibility classes. The quantitative amounts of erodibility were categorized based on slope classes and the highest value observed for 5-8% slope that belongs to dry farming land use. Also K-factor showed various values in different hydrological groups, where group A showed the least and group D showed the highest amount. It seems that inappropriate soil management in both hilly areas and dry farming lands is one of the main causes of soil damage and an increase of soil erodibility.

کلیدواژه‌ها [English]

  • Geostatistics
  • Soil Erosion
  • Soil Hydrological Groups
  • Mapping
Reference

Addis H.K., Klik A., Strohmeier S., 2015. Spatial Variability of Selected Soil Attributes under Agricultural Land Use System in a Mountainous Watershed, Ethiopia. International Journal of Geosciences 6(06): 605.

Arabkhedri M., Valikhojieni A., Hakimkhani S., Charkhabi A.H., Telvari A., 2004. Estimating and mapping of sediment yield for Iran. Final Research Report. Soil Conservation and Watershed Management Research Institute, Teheran. (In Persian)

Arnold R., 1996. Soil Survey Reliability: Minimizing the consumer's risk. Data reliability and risk assessment in soil interpretations, pp.13-20.

Bagarello V., Di Stefano C., Ferro V., Giuseppe G., Iovino M., 2009. A pedotransfer function for estimating the soil erodibility factor in Sicily. Journal of Agricultural Engineering 40(3): 7-13.

Baskan O., Dengiz O., 2008. Comparison of traditional and geostatistical methods to estimate soil erodibility factor. Arid Land Research and Management 22(1): 29-45.

Bayramin I., Dengis O., Baskan O., Parlak M., 2003. Soil erosion risk assessment with ICONA model; Case study: Beypazar area. Turkish Journal of Agriculture and Forestry 27: 105-116.

Biswas S.S., Pani P., 2015. Estimation of soil erosion using RUSLE and GIS techniques: a case study of Barakar River basin, Jharkhand, India. Modeling Earth Systems and Environment 1(4): 1-13.

Brady N.C., Weil R.C., 2012. The nature and properties of soils. Pearson education. Inc., New Jersey.

Burrough P., McDonnell R., 1998. Creating continuous surfaces from point data. Principles of Geographic Information Systems. Oxford University Press, Oxford, UK.

Buttafuoco G., Conforti M., Aucelli P., Robustelli G., Scarciglia F., 2012. Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environmental Earth Sciences 66(4): 1111-1125.

Dorren L., Bazzoffi P., Díaz J.S., Arnoldussen A., Barberis R., Üveges J.B., Böken H., Castillo V., Düwel O., Imeson A., 2004. Working Group on Soil Erosion Task Group III on Impacts of soil erosion.

Franzi L., Bianco G., 2001. A statistical method to predict debris flow deposited volumes on a debris fan. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial and Planetary Science 26(9): 683-688.

Goldman S.J., Jackson K., Bursztynsky T.A., 1986. Erosion and sediment control handbook. McGraw-Hill.

Goovaerts P., 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89(1): 1-45.

Imani R., Ghasemieh H., Mirzavand M., 2014. Determining and Mapping Soil Erodibility Factor (Case Study: Yamchi Watershed in Northwest of Iran). Open Journal of Soil Science 2014.

Li J., Heap A.D., 2008. A review of spatial interpolation methods for environmental scientists. Geoscience Australia Canberra.

Morgan R.P.C., 2009. Soil erosion and conservation. John Wiley and Sons, 316p.

Myers D.E., 1994. Spatial interpolation: an overview. Geoderma 62(1): 17-28.

Nelson D.W., Somers L.E., 1982. Page AL, Miller RH, Keeney DR (Ed.), Methods of Soil Analysis, Part 2: Chemical and Microbial Properties, American Society Agronomy, Inc. and SSSA Inc. Madison Wis. pp. 565-571.

Mueller T.G., Pusuluri N.B., Mathias K.K., Cornelius P.L., Barnhisel R.I., 2004. Site-specific soil fertility management. Soil Science Society of American Journal, 68(6): 2031-2041.

Nielsen D.R., Wendroth O., 2003. Spatial and temporal statistics: sampling field soils and their vegetation. Catena Verlag.

Parysow P., Wang G., Gertner G., Anderson A., 2001. Assessing uncertainty of erodibility factor in national cooperative soil surveys: a case study at Fort Hood, Texas. Journal of Soil and Water Conservation 56(3): 207-211.

Robertson G.P, 2008. GS+: Geostatistics for the environmental sciences. Gamma design software, Plainwell.

Vanmaercke M., Poesen J., Radoane M., Govers G., Ocakoglu F., Arabkhedri M., 2012. How long should we measure? An exploration of factors controlling the inter-annual variation of catchment sediment yield. Journal of Soils and Sediments, 12(4): 603-619.

Vieira S. R., Paz Gonzalez A., 2003. Analysis of the spatial variability of crop yield  and soil properties in small agricultural plots. Bragantia, Campinas 62: 127-138

Wang G., Gertner G., Liu X., Anderson A., 2001. Uncertaintyassessment of soil erodibility factor for revised universal soil loss equation. Catena 46(1): 1-14.

Wei J.-B., Xiao D-N., Zeng H., Fu Y.K., 2008. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environmental Geology 53(8): 1663-1672.

Wilding L., 1985. Spatial variability: its documentation, accommodation and implication to soil surveys, Soil spatial variability. Workshop, 166-194.

Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses-A guide to conservation planning. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning.

Zhu B., Li Z., Li P., Liu G., Xue S., 2010. Soil erodibility, microbial biomass, andphysical–chemical property changes during long-term natural vegetation restoration: a case study in the Loess Plateau, China. Ecological Research 25(3): 531-541.