نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد گروه علوم خاک دانشگاه ارومیه

2 استادیار

3 دانشجوی کارشناسی ارشد گروه علوم خاک دانشگاه ارومیه

4 دانشجوی دکتری گروه علوم خاک دانشگاه ارومیه

چکیده

استفاده از ریزجانداران در خاک‌های متأثر از تنش می‌تواند این امر را در گیاهان کاهش دهد. به منظور بررسی تأثیر ریزجانداران حل‌کننده فسفات ((PSB: Pseudomonas fluorescens, PSF: Aspergillus niger، قارچ‌های میکوریز (M: Funneliformis mosseae (G. mosseae)، (G. intraradices) Rhizophagus irregularis، Rhizophagus fasciculatus (G. fasciculatum))، و اثرات متقابل آن‌ها بر بهبود جذب عناصر غذایی تحت شرایط شوری، آزمایشی به صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی در شرایط گلخانه‌ای به مدت 70 روز‌ اجرا گردید. در پایان دوره رشد، برخی شاخص‌های رشد گیاه و غلظت عناصر غذایی در اندام هوایی گیاه اندازه‌گیری شد. نتایج حاکی از تأثیر معنا‌دار سطوح شوری بر جذب فسفر و پتاسیم، سدیم، کلر و ارتفاع اندام هوایی بود. تجمع پرولین در برگ (96/0 میکرو‌مول بر گرم برگ) نیز از دیگر تأثیرات شوری بود. در بین تیمار‌های میکروبی، تیمار میکوریزی بالاترین مقادیر پارامترهای اندازه‌گیری شده را به خود اختصاص داد. به‌طوری‌که بیشترین مقادیر شاخص‌های رشد اندازه‌گیری شده از جمله ارتفاع اندام هوایی (89/78 سانتی‌متر)، وزن خشک بخش هوایی (77/15 گرم در گلدان) و وزن خشک ریشه (47/8 گرم در گلدان) در تیمار میکوریزی مشاهده گردید. مقادیر نیتروژن و پتاسیم برگ‌ها در شرایط تلقیح میکروبی افزایش یافت لیکن سدیم و کلر اندام هوایی در این شرایط کاهش معنا-داری داشتند. تیمارهای تلقیح قارچی و میکوریزی، مقدار پرولین برگ را به ترتیب 46/15 و 85/15 درصد در مقایسه با تیمار شاهد افزایش دادند. چنین استنباط می‌شود که تلقیح میکوریزی در کاهش اثرات تنش شوری در گیاه ذرت نقش بارزتری نسبت به سایر ریزجانداران دارد.

کلیدواژه‌ها

عنوان مقاله [English]

Effects of Phosphate-Solubilizing Microorganisms and Mycorrhizal Fungi on the Growth Parameters of Corn (Zea mays L.) under Salinity Condition

نویسندگان [English]

  • Mir Hassan Rasouli Sadaghiani 1
  • mohsen barin 2
  • Fatemeh Shakouri 3
  • Sanaz Ashrafi Saeidlou 4

1 Prof., of Soil Science, Dept. of Soil Science, Urmia University

3 MSc. Student, Dept. of Soil Science, Urmia University

4 PH.D. Student, Dept. of Soil Science, Urmia University

چکیده [English]

Using of microorganisms in stress affected soils can alleviate the condition in plants. In order to assess the effects of phosphate-solubilizing microorganisms (PSB: Pseudomonas fluorescens, PSF: Aspergillus niger) and mycorrhizal fungies (M: Funneliformis mosseae (G. mosseae),Rhizophagus irregularis (G. intraradices), Rhizophagus fasciculatus (G. fasciculatum)) and their interactions on improving nutrient uptake under salinity stress condition, an experiment carried out in a randomized complete block design under greenhouse conditions. Some plant growth indicators and nutrient concentrations in plant shoot were measured at the end of growing period (70 days). The results showed the significant influence of salinity levels on phosphorous uptake, potassium, sodium, and chlorine concentrations, and shoot length. Proline accumulation in leaves (0.96 µmol g-1) was resulted with increasing of salinity levels. Among all microbial treatments, the maximum values of the parameters were resulted with mycorrhiza treatment, including shoot length (78.89 cm), shoot dry weight (15.77 g pot-1) and root dry weight (8.47 g pot-1). Unlike shoot sodium and chlorine concentrations, leaves nitrogen and potassium contents increased in microbial inoculation condition. Leaf proline was increased by 14.46% and 15.85% with fungi and mycorrhizal treatments compared to control, respectively. It is inferred that inoculation of AMF drastically decreased salinity effects in compared to other phosphate-solubilizing microorganisms in corn.

کلیدواژه‌ها [English]

  • Corn
  • Mycorrhiza
  • Phosphate solubilizing microorganisms
  • Phosphorous
  • Salinity
Refrences
Aliasgharzad N., and Esfandiari M.R. 2004. Effects of dual inoculations of Sinorhizobium meliloti and arbuscular mycorrhizal fungi on growth of salt-stressed alfalfa. Proceeding of the 2004 CIGR International Conference, Beijing, China.
Alizadeh A. 2008. The effect of mycorrhiza on the absorption of nutrients in corn under different moisture conditions. Journal of Research in Agricultural Sceinces, 53: 97-102. (In Persian)
Al-karaki G.N., Hammad R., and Rusan M. 2001. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11: 43-47.
Al-Karaki G.N. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subseqent performance under irrigatoin with saline water. Scientia Horticulture, 109: 1-7.
Asghari H.R., Marschner P., Smith S.E., and Smith F.A. 2005. Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil, 273: 245-256.
Asghari H.R. 2008. Vesicular-arbuscular (VA) mycorrhiza improve salinity tolerance in preinoculation subterranean (Trifolium subterranean) seedlings. International Journal of Plant Production, 2: 3.
Ashraf M. 1994. Breeding for salinity tolerance in plants. Critical Reviews in Plant Sciences, 13:17-42.
Ashraf M., and Khanum A. 1996. Relationship between ion accumulation and growth in two spring wheat lines. Journal of Agronomy & Crop Science, 178:39-51.
Bates L.S., Waldren R.P., and Teare I.D. 1973. Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207.‏
Boomsma C.R., and Vyn T.J. 2008. Maize drought tolerance: Potential improvements through arbuscular mycorrhizal symbiosis. Field Crops Research, 108: 14-31.
Bohra J.S., and Döffling K. 1993. Potassium nutrition of rice (Oryza sativa L.) varieties under NaCl salinity. Plant and Soil, 152, 299-303.
Cassman K.G., Whatney A.S., and Fon R.L. 1981. Phosphprus requirements of soybean and cowpa as affected by mode of nutrition. Agronomy Journal, 73: 17-22.
Cotteni A. 1980. Methods of plant analysis. In: Robert Lee Westerman. Soil and Plant Testing, FAO Soil Bulletin, pp. 64-100.
Cramer G.R., Lynch J., Lauchli A., and Epstein E. 1987. Influx of Na+, K+ and Ca2+ into roots of salt-stressed cotton seedlings: effects of supplemental Ca2+. Plant Physiology, 83: 510-516.
FAO. 2005. Global Network on Integrated Soil Management for Sustainable Use of Salt-affected Soils. FAO Land and Plant Nutrirtion Management Service, Rome, Italy. Available at http://www.fao.org/ag/agl/agll/spush.
Feng G., Li X.L., Zhang F.S., Tian C.Y., and Tang C. 2002. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12: 185-190.
Flowers T.S., Torke P.F., and Yeo A.R. 1977. The mechanism of salt tolerance in halophytes. Plant Physiology, 28: 89-121.
Francois L.E. 1996. Salinity effectson four sunflower hybrids. Agronomy Journal, 88(2): 215-219.
Ghaderi A., Aliasgharzad N., Oustan S., and Olsson P.A. 2008. Efficeincy of three Pseudomonas isolates in releasing phosphate from an artificial variable-charge mineral (iron III hydroxide). Soil Environmental, 27(1): 71-76.
Giri B., Kapoor R., and Mukerji G. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 14: 307-312.
Grattan S.R., and Grieve C.M. 1992. Mineral nutrient acquisition and response by plants grown in saline environments. In: Pessarakli M (Ed). Handbook of plant and cold stress, pp. 203-226.
Gull F.Y., Hafeez I., Saleem M., and Malik K.A. 2004. Phosphorus uptake and growth promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobia culture. Australian Journal of Experimental Agriculture, 44: 623-628.
Gupta R.K. 2000. Soil, plant, water and fertilizer analysis. Agrobios, New Delhi, India, pp. 438.
Hassan N.A.K., Drew J.V., Knudsen D., and Olsen R.A. 1970. Infuence of soil salinity on production of dry matter and uptake and distribution of nutrients in barley and corn. Agronomy Journal, 62: 46-48.
Heydari-Sharifaabad H. 2002. Plant and Salinity. Research Institute of Forest and Reglands Press, Tehran, pp. 199-222. (In Persian)
Hoeksema J.D., Chaudhary V.B., Gehring C.A., Johnson N.C., Karst J., Koide R.T., and Wilson G.W. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 13(3): 394-407.
Jindal V., Atwal A., and Singh R. 1993. Effect of Vesicular-arbuscular mycorrhizae on metabolism of moong plant under NaCl salinity. Plant Physiology, 31: 475-481.
Kafi M., and Mahdavi-Damghani B. 2000. Resistance Mechanisms to Environmental Stresses in Plants. Ferdowsi-Mashhad Univercity Press, pp. 467-469. (In Persian)
Khalil-Arjmandi A. 1998. Evaluate effect of nitrogen and phosphorous deffirent levels on thyme productivity. MSc thesis. Department of gardening, Agriculture Faculty, University of Tarbiat Modarres. (In Persian)
Khavazy K., Asadi-Rahmani H., and Malakouti M.J. 2005. Nesseccity of industrial production of biological fertelizers in country. Sana publication, pp. 274-279. (In Persian)
Kucey R.M.N. 1983. Phosphate-solubilizing bacteria and fungi in various cultivated and virgin Alberta soils. Canadian Journal of Soil Science, 63(4), 671-678.‏
Liu Y., Mi G., Chen F., Zhang J., and Zhang F. 2004. Rhizosphere effect and growth of two maize genotypes with contrasting P efficiency at low P availability. Plant Science, 167: 217-233.
Maiquetia M., Caceres A., and Herrera A. 2009. Mycorrhization and phosphorus nutrition affect water relations and CAM induction by drought in seedlings of Clusia minor. Annal Botany, 103: 525-532.
Malakouti M.J., Keshavarz P., and Karimian N. 2008. Comprehensive method of recognition and fertilizer recommendation for sustainable agriculture. Tarbiat Modarres edition. (In Persian)
Mansouri H., Ahmadi-Moghaddam A., and Rouhani N. 2007. Mycorrhizal and nonmycorrhizal bean response to salinity stress. Journal of biological science promotion, 20:80-88. (In Persian)
Marschner H., and Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and Soil, 159: 89-102.
Mirmohammadi-Meybodi S., and Ghareziyaei B. 2002. Physiological and linebreeding aspects of plants salinity stress. Industerial Esfahan University publition center, 274p. (In Persian)
Molassiotis A.N., Sotiropoulos T., Tanou G., Kofidis G., Diamantidis G., and Therios I. 2006. Antioxidant and anatomical response in shoot culture of the apple rootstock MM 106 treated with NaCL, mannitiol or sorbitol. Biologia Plantarum, 50: 61-68.
Mulvaney R.L. 1996. Nitrogen-Inorganic Forms. In: Methods of soil analysis. Part 2- Chemical properties. Methods of soil analysis. Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, WI, pp: 1123-1184.
Rabie G.H., and Almadini A.M. 2005. Role of bio-inoculants in development of salt tolerance of Vicia faba Plants. African Journal of Biotechnology, 4: 210-222.
Rajapakse S., and Creighton Miller J. 1992. Methods for studing vesicular-arbuscular mycorrhizal root colonization and related root physical properties. Methods in Microbiology. Academic Press INC. ISBN 0-12-521524-X. 275-301.
Rigou L., and Mignard E. 1994. Factors of acidification of the rhizosphere of mycorrhiza plants: Measurement of p CO2 in the rhizosphere. Acta Botanica Gallica, 141: 533-539.
Rodrı́guez H., and Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17(4): 319-339.‏
Sengupta A., and Chaudhari S. 1990. Vesicular-arbuscular mycorrhizae (VAM) in pioneer salt marsh plantsof the Gangas River Delta in west Bengal, InDIA. Plant and Soil, 122: 111-113.
Sepehr E., Malakouti M.J., Kholdebarin B., Samadi A., and Karimian N. 2009. Geno topics Variation in P efficiency of selected Iranian cereals in green house experiment. Journal Plant Production, 3: 17-28.
Sharma A.K. 2002. Bifertilizers for sustainable agriculture. Agrobios Indian Publications, pp. 456-480.
Sharma S., Kumar V., and Tripati R.B. 2011. Isolation of Phosphate solubilizing microorganism from soil. Journal of Microbiology and Biotechnology Research, 1(2): 90-95.
Sheng M., Tang M., Chan H., Yang B., and Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18: 287-296.
Torres C., and Bingham F.T. 1973. Salt tolerance of Mexican wheat: I. effect of NO3 and NaCl on mineral nutrition, growth and grain production of four wheats. Soil Science Society of America Journal, 37: 711-715.
Whitelaw M.A. 1999. Growth promotion of plants inoculated whit phosphate solubilizing fungi. Advances in Agronomy, 69: 99-151.