ارزیابی پتانسیل خطرپذیری آلودگی فلزات سنگین در برخی از خاک‌های شهرستان ورامین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 شیمی خاک و حاصلخیزی خاک

2 دانشجو

3 استادیار گروه علوم خاک دانشگاه زنجان

4 بخش تحقیقات کشت گلخانه ای، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان تهران،سازمان تحقیقات، آموزش و ترویج کشاورزی، ورامین،ایران.

چکیده

همگام با رشد صنعت و فناوری، ورود آلاینده‌های زیست‌محیطی و در صـدر آن‌ فلـزات سنگین به خاک‌، موجب افزایش نگرانی جامعه جهانی در رابطه با امنیت غذایی شـده اسـت. هدف از این مطالعه ارزیـابی میزان خطر زیست‌محیطی عناصر سـنگین با اسـتفاده از شـاخص‌هـای آلـودگی در شهرستان ورامین می‌باشد. برای این منظور، 35 نمونه مرکب خاک سطحی کشاورزی از هفت منطقه تهیه شد. مقدار کل و قابل جذب عناصرسنگین با تیزاب سلطانی و DTPA استخراج و با دستگاه جذب اتمی اندازه‌گیری شد. شاخص‌های زمین‌انباشتگی، فاکتور غنی‌سازی، فاکتور آلودگی، پتانسیل خطر پذیری زیستی و نسبت قابل جذب محاسبه شد. میانگین غلظت کل کادمیوم، سرب، روی، نیکل، کبالت، مس و کروم به ترتیب برابر 090/0، 3/52، 146، 0/25، 95/4، 1/42 و 2/73 و مقادیر قابل جذب این عناصر 035/0، 07/5، 10/7، 047/0، 041/0، 01/3، 030/0 میلی‌گرم بر کیلوگرم اندازه‌گیری شدند. بیشترین مقدار شاخص زمین‌انباشتگی، فاکتور غنی‌شدگی، شاخص آلودگی، پتانسیل خطر زیست‌محیطی و شاخص نسبت‌های قابل جذب به ترتیب مربوط به مس (69/1) ، کروم (70/8)، مس (21/5)، کروم (52/43) و سرب (87/10) بود. شاخص جامع آلودگی که از میانگین شاخص آلودگی کلیه فلزات محاسبه شد، برابر با 08/4 بود و در کلاس آلودگی بالا قرار گرفت اما شاخص پتانسیل خطر زیست محیطی کل (109) در محدوده مجاز خطر زیست محیطی قرار گرفت. تفسیر نتایج شاخص زمین انباشتگی و پتانسیل خطر زیست‌محیطی نشان داد سرب، مس و روی، تحت تاثیر فعالیت‌های انسانی هستند، درحال‌که کادمیوم و کبالت صرفا منشاء زمین‌شناسی دارند. نهاده‌های کشاورزی و فاضلاب شهری عامل اصلی افزایش غلظت قابل جذب سرب، مس و روی به‌نظر می‌رسد. نظارت مستمر بر غلظت آلاینده ها در خاک های کشاورزی و همچنین محصولات کشاورزی برای حفظ منابع تولید و دستیابی به امنیت غذایی ضروری است.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing pollution risk of heavy metals in some of Varamin agricultural soils

نویسندگان [English]

  • Mohammad Babaakbari 1
  • maryam shakoori 2
  • Akbar Hassani 3
  • Mohsen Seilsepour 4
1 شیمی خاک و حاصلخیزی خاک
2 student
3 Soil Science department, Faculty of agriculture, University of Zanjan, Zanjan, Iran
4 Greenhouse Cultivation Research Department, Tehran Agricultural and Natural Resources Research and Education Center, AREOO, Varamin,Iran
چکیده [English]

Considering the development of industry and technology, the accumulation of environmental contaminants, especially heavy metals (HMs) in the soil lead to increasing concern about the food security. The purpose of this study was to assess the environmental risk of heavy metals using soil pollution indices. For this purpose, thirty five soil samples were taken from agricultural area in seven sites. The total and available concentration of metals extracted by Aqua Regia and DTPA were determined by an atomic absorbtion spectrometer. Geoaccumulation index (Igeo), enrichment factor (EF), pollution index (PI), contamination factor (CF), potential ecological risk (RI), and availability ratio (AR) were calculated. Mean total concentration of Cd, Pb, Zn, Ni, Co, Cu and Cr were 0.09, 52.3, 146, 25.0, 4.90, 42.1 and 73.1 mg/kg, and their available values were 0.035, 5.07, 7.10, 0.047, 0.041, 3.01 and 0.030 mg/kg of soils, respectively. The highest values of Igeo, EF, PI, RI and AR indicators were found in Cu (1.69), Cr (8.70 ), cu (5.21), Cr (43.52), and lead (10.87), respectively. Integrated pollution index (IPI) calculated using the average of total CF was 4.08 indicating the higher contamination class in the area whereas IR value was in acceptable ecological range (IR= 109). Analysis of Igeo and IR data showed that Pb, Zn and Cu vary by anthropogenic activities in the area while Cd and Co values are solely affected by lithgenic factor. Agricultural inputs and urban wastewaters can be the major factor increasing of pollutants in the agricultural soils in the area. Monitoring the pollutants concentration in the agricultural soils as well as in agricultural products is essential to conserve natural resources and obtain food security.

کلیدواژه‌ها [English]

  • Contamination Factor
  • Enrichment factor
  • Geo accumulation index
  • Potential ecological risk
Reference

Albanese S., De Vivo B., Lima A., and Cicchella D. 2006. Geochemical backgroundand baseline values of toxic elements in stream sediments of Campania region (Italy). Journal of Geochemical Exploration, 93: 21 -34.

Baize D., and Sterckeman T. 2004. On the necessity of knowledge of the natural pedogeochemical background content in the evaluation of the contamination of soils by trace elements. Science of the Total Environment, 264: 127-139.

Bhuiyan M.A.H., Parvez L., Islam M.A., Dampare S.B., and Suzuki S. 2010. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials. 173: 384-392.

Bhuiyan M.A.H., Parvez L., Islam M.A., Dampare S.B., and Suzuki S. 2010. Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173: 384-392

Blaser P., Zimmermann S., Luster J., and Shotyk W. 2000. Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb and Zn, in Swiss forest soils. Science of the Total Environment, 249: 257-280

Boamponsem GA, Kumi M, Debrah L. 2012. Heavy metals Accumulation in cabbag, lettuce and carrot irrigatetd with wastewater from Nagodi mining site in Ghana. International Journal of Scientific and Technology Research, 1(11): 124-129.

Bouyoucos G. H. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43: 434–438.

Burt R. 2004. Soil survey laboratory methods manual: soil survey investigations report No. 42 Version 4.0. Nebraska: United States Department of Agriculture, Natural Resources Conservation Service.

Cai L., Xu Zh., Ren M., Guo Q., Hu X., Hu G., Wan H., and Peng P. 2012. Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicology and Environmental Safety Journal, 78: 2-8.

Chabukdhara M., and Nema A.K. 2012. Assessment of heavy metal contamination in Hindon River sediment: A chemometric and geochemical approach. Chemosphere, 87: 945-953.

DeTemmerman L., Vanongeval L., Boon W., and Hoenig G. 2003. Heavy metal content of arable soils in northern Belgium. Water, Air, and Soil Pollution, 148: 61-73

Franco-Uria A., Lopez-Mateo C., Roca E., and Fernandez-Marcos M.L. 2009. Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. Journal of Hazardous Materials, 165: 1008-1015

Hakanson L. 1980. Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research Journal, 14: 975-1001.

Han Y.M., Du P.X., Cao J.J., and Posmentier E.S. 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China. Science of the Total Environment, 355: 176-186

Jamali M and khoshbakhat k. 2015. The Study on the measurement and zonation pollution in the area of drainage network of Shahreray. Ministry of Energy, Iran Water Resources Management Company. 47. (In Persian)

Kabata-Pendias A., and Pendias H. 1984. Trace elements in soils and plants. Boca Raton: CRC press.

Lindsay W.L., and Norvell W.A. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America, Proceedings, 42: 421–428.

Massas I., Ehaliotis C., Kalivas D., and Panagopoulou G. 2010. Concentrations and availability indicators of soil heavy metals; the case of children's playgrounds in the city of Athens (Greece). Water, Air, and Soil Pollution, 212(1–4): 51 –63.

Massas I., Kalivas D., Ehaliotis C., and Gasparatos D. 2013. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes. Environmental Monitoring Assessment, 185: 6751 - 6766.

Muller, G. 1969. Index of geoaccumulation in sediment of the Rhine River. Geo Journal. 2: 108-118.

Nelson D.W., and Sommers L. E. 1982. Total carbon, organic carbon and organic matter. In: Page A.L. et al. (Ed.) Methods of Soil Analysis Part 2. 2nd Ed. Agronomy Monograph. 9. ASA and SSSA. Madison, WI.

Nemati H., and Bostani A.A. 2014. Assessment of lead and cadmium uptake by tomato
plant in the presence of PGPR and arbuscular Mycorrhizal fungi. Journal of Soil Management and Sustainable Production, 4: 1. 219-233. (In Persian)

Norozi S, Ghazban F, Ardestani M, Khosro Tehrani Kh. 2006.The environmental impacts of Cr, Cd, Cu and Ni on The soil and water of south-western Mobarakeh. Humans and The Environment, 56-63. (In Persian)

Shi G., Chen Z., Bi, C., Li Y., Teng J., Wang L., and Xu S. 2010. Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the bioggestmetrolitan area of China. Environmental Pollution, 158: 694-703.

Shomali A.R., and Khodaverdilo H. 2012. Contamination of soils and plants along Urmia Salmas highway (Iran) to some heavy metals. Journal of Water and Soil Science, 22: 157-172. (In Persian)

Sposito G., Land L. J., and Chang A.C. 1982. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in solid phases. Soil Science Society of American Journal, 46:2. 260-264.

Su Y.Z., and Yang R. 2008. Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China Journal of Geochemical Exploration, 98: 57-64

Sun Y., Zhou Q., Xie X., and Liu R. 2010. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials,174: 455-462.

Tabari M and Salehi A. 2010. Effect of irrigation using waste water on heavy metal accumulation in soils. Environmental Science and Technology, 4:49-59. (In Persian)

Taghipour M., Khademi H., and Ayoubi Sh. 2010. Spatial variability of Pb and Zn concentration and its relationship with land use and parent materials in selected surface soils of Hamadan province. Journal of Water and Soil, 24: 132-144. (In Persian)

Teng Y., Shijun N.I., Wang J., Zuo R., and Yang J. 2010. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China Journal of Geochemical Exploration, 104: 118-127

Toth G., Hermann T., Szatmari G., Pasztor L., 2016. Maps of heavy metals in the soils of the European Union and proposed priority areas for detailed assessment. Science of the Total Environment, 565, 1054 –1062.

Ye C., Li S., Zhang Y., and Zhang Q. 2011. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. Journal of Hazardous Materials, 191: 366-372.

Zhang J., and Liu C.L. 2002. Riverine composition and estuarine geochemistry of particulate metals in China-weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54: 1051 -1070.