جداسازی، غربالگری و بررسی صفات محرک رشد گیاهی ریزجانداران مقاوم به کادمیوم و سرب

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه محقق اردبیلی

2 دانش آموخته کارشناسی ارشد

3 بیولوژی خاک- دانشگاه محقق اردبیلی

4 هیئت علمی

5 شیمی و حاصلخیزی

چکیده

موفقیت تکنیک گیاه­پالایی نه تنها به گیاه، بلکه تا حد زیادی به اثرات متقابل ریشه­ها­ی گیاه با ریزجانداران ریزوسفری وابسته است. این ریزجانداران به ویژه باکتری­های دارای صفات محرک رشد گیاهی می‌توانند با افزایش میزان جذب فلزات سنگین و کمک به استقرار بهتر گیاه، افزایش رشد سیستم ریشه­ای و در نتیجه افزایش رشد گیاه باعث بهبود کارایی گیاهپالایی شوند. با توجه به نقش مهم جامعه میکروبی خاک در افزایش راندمان پایش خاک­های آلوده با استفاده از گیاهان، این پژوهش با هدف جداسازی، غربالگری، بررسی صفات محرک رشد گیاهی ریزجانداران مقاوم به کادمیوم و سرب و معرفی جدایه­های برتر انجام شد. بدین­منظور، نمونه­های خاک آلوده به کادمیوم و سرب از نقاط مختلف پالایشگاه نفت شهید تندگویان (واقع در پانزده کیلومتری جنوب شهر تهران) تهیه و پس از اندازه­گیری برخی از ویژگی­های فیزیکی و شیمیایی، ریزجانداران مقاوم به کادمیوم و سرب از آنها جداسازی گردید. در جدایه­های جداسازی شده، میزان مقاومت به کادمیوم و سرب تعیین و سپس توانایی جدایه­های برتر در تولید فیتوهورمون اکسین، ترشح متابولیت­های محدود کننده­ی رشد عوامل بیمارگر و همچنین حل­کنندگی تری­کلسیم فسفات مورد ارزیابی قرار گرفت. در این پژوهش، 30 ریزجاندار از خاک­های آلوده­ جداسازی و پس از بررسی شکل ظاهری کلنی، رنگ و حاشیه آن و همچنین سرعت رشد، در نهایت 20 جدایه متفاوت انتخاب گردید. 70 درصد جدایه­های مورد مطالعه تا غلظت 8 میلی­مولار سرب و کادمیوم رشد خیلی خوبی را در محیط کشت نشان دادند. نتایج حاصل از ارزیابی صفات محرک رشد گیاهی در 10 جدایه برتر از نظر مقاومت به سرب و کادمیوم نشان داد که کلیه این جدایه­ها توانایی تولید اکسین و حل­کنندگی فسفات­های معدنی نامحلول را داشتند. بیشترین  (20/10 میلی‌گرم در لیتر) و کمترین (64/0 میلی‌گرم در لیتر) مقدار تولید اکسین به ترتیب مربوط به جدایه­های C4 و C2 بود. متوسط حل­کنندگی تری کلسیم فسفات توسط جدایه­ها 91/106 میلی‌گرم در لیتر بود. 80 درصد جدایه­ها توانایی یکسانی در تولید سیدروفور داشتند. بیشترین میزان تولید این متابولیت در جدایه C1 با نسبت هاله به کلنی 23/3 مشاهده گردید. از 10 جدایه­ی مورد مطالعه، سه جدایه­ی K2، K5 و C8 توانایی بالایی در تولید سیانید هیدروژن، آنزیم پروتئاز و سلولاز داشتند.

کلیدواژه‌ها


عنوان مقاله [English]

Isolation, Screening and Evaluation of Plant Growth Stimulating Traits of Cd and Pb Resistant Microorganisms

نویسندگان [English]

  • Manizhe Eivazi Nei 2
  • Akbar Ghavidel 3
  • payman abbaszadeh dahaji 4
  • Esmaeil Goli Kalanpa 5
1 هیات علمی
2 MSc. Graduated
3 Faculty member
4 faculty member
5 faculty member
چکیده [English]

Abstract
Success of the phytoremediation technique depends not only on plant species, but also largely on the interactions of plant roots with the rhizosphere microorganisms. These microorganisms, especially bacteria with plant growth promoting traits, can improve efficiency of phytoremediation by helping to proper plant establishment, increasing root system growth and, consequently, increasing plant growth and enhancing heavy metal uptake. Considering the important role of soil microbial community in increasing the remediation of polluted soil with plants, this research was conducted with the aim of isolating, screening, investigating the traits of cadmium and lead-resistant bacteria and introducing superior isolates. Soil samples were taken from Cd and Pb contaminated soils of the Shahid Tondguyan oil refinery and after measuring some physical and chemical properties, heavy metals resistant microorganisms were isolated from them. Resistance to cadmium and lead was determined in the isolates, and then the ability of the superior isolates to produce phytohormones of auxin, secretion of growth inhibitor metabolites and solubilization of insoluble inorganic phosphate were evaluated. In this study, thirty microorganisms were isolated from contaminated soils. After examining the appearance of the colony, its color and margin, as well as the growth rate, at the end, 20 different isolates were selected. 70% of the studied isolates showed a very good growth in culture medium up to a concentration of 8 mM l-1 of lead and cadmium. The results of evaluation of plant growth promoting traits in the top 10 isolates in terms of resistance to heavy metals of lead and cadmium showed that all of these isolates had the ability to produce auxins and dissolve insoluble inorganic phosphates. The highest (10.20 mg l-1) and the lowest (0.64 mg l-1) auxin production were observed for C4 and C2 isolates, respectively. The average solubility of tricalcium phosphate by isolates was 106.91 mg l-1. 80% of isolates had the same ability to produce siderophore. The highest rate of production of this metabolite was observed in the isolate C1 with a halo to colony ratio of 23.3. Among 10 studied isolates, three isolates, K2, K5 and C8, were able to produce hydrogen cyanide, protease and cellulase enzymes.

کلیدواژه‌ها [English]

  • Heavy metals
  • soil contamination
  • microorganisms
  • phytoremediation
References

Alexander D. B., and Zuberer D. A. 1991. Use of cgrome azural S reagents to evaluate sidrophore production by rhizosphere bacteria. Biology and Fertility of Soils, 12: 39-45.

Berendsen R.L., Pieterse C.M. and Bakker P.A. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8):478-486.

Brady N.C., and Weil R.R. 1996. The Nature and Properties of Soils. Prentice-Hall, Inc.980p.

Bruins M.R., Kapil S. and Oehme F.W. 2000. Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45(2): 198-207.

Carter M.R., and Gregorich E.G. 2008. Soil Sampling and Methods of Analysis (2nd Ed.), CRC Press.Boca Raton, FL. P.1204.

Chen L., Luo S., Li X., Wan Y., Chen J. and Liu C., 2014. Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry, 68:300–308.

Choudhury R., and Srivastava S. 2001. Zinc resistance mechanisms in bacteria. Current Science, 81(7): 768-775.

Clarke R. B. Marin pollution.1992. Clarendon Press. Oxford, 20: 172-175.

Dinu L.D., Anghel L. and Jurcoane S. 2011. Isolation of heavy metal resistant bacterial strains from the battery manufactured polluted environment. Romanian Biotechnological Letters, 16(6): 102-106.

Donate-Correa J., Leon-Barrios M. and Perez-Galdona R. 2004. Screening for plant growth promoting rhizobacteria in Chamaecytisus proligerus, a forage tree-shrub legume endemic to the Canary Island. Plant and Soil, 266: 261-272.

Duff R.B., and Webley D.M. 1959. 2-Ketogluconic acid as a natural chelator produced by soil bacteria. Chemistry and Industry, 13:76–77.

Gandomkar A., Rahmani H.R. and Hadi M. 2012. Investigation of Lead and Cadmium distribution in Borkhar region soils. Journal of Physical Geography, 17: 75-81. (In Persian)

Glick B.R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21:383-393.

Goldstein A. H. 1986. Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. American Journal of Alternative Agriculture, 1:57–65.

Gouda S., Kerry R.G., Das G., Paramithiotis S., Shin H.S. and Patra P.J., 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research, 206: 131–140.

Hansda A., Kumar V., Usmani A., and Usmani Z. 2014. Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): A current perspective. Recent Research in Science and Technology, 6(1): 131-134.

Heidarpour L., Soltani Toularoud A.A., and Goli Kalanpa E. 2017. Isolation, screening and evaluation of plant growth promoting characteristics of arsenic (III) & (V) resistant microorganisms and assessment the effect of superior isolates on morphological properties of Oregano in a arsenic-polluted soil. Journal of Soil Biology, 4:135-151. (In Persian)

Hopkins C.G., and Whiting A.L. 1916. Soil bacteria and phosphates. III. Science; 190: 395-406.

Hrynkiewicz K, Baum C. 2012. The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Environmental Protection Strategies for Sustainable Development. Springer, pp. 35-64.

Hrynkiewicz K., Złoch M., Kowalkowski T., Baum C. and Buszewski B. 2018. Efficiency of microbially assisted phytoremediation 1 of heavy-metal2 contaminated soils. Environmental Reviews, 26(3): 316-332.

Illmer P., and Schinner F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biology and Biochemistry, 24:389–95.

Katiyar D., Hemantaranjan A., and Dwivedi P. 2018. Plant growth promoting rhizobacteria and their roles as fungal biocontrol agents: An overview. Journal of Plant Science and Research, 34: 127–136.

Kremer R.J., and Souissi T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology, 43: 182-186.

Kumara P., Thakura S., Dhingrac G.K., Singhd A., Kumar Pale M., Harshvardhanf K., Dubeyg R.C. and Maheshwarig D.K. 2018. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology, 15:264-269.

Lindsay W. L., and Norvell W.A. 1978. Development of a DTPA Soil Test for Zn, Fe, Mn, and Cu. Soil Science Society of American Journal, 42: 421–428.

Ma Y., Oliviera R.S., Nai F., Rajkumar M., Luo Y., Rocha I. and Freitas H. 2015. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. Journal of Environmental Management, 156:62–69.

Majidi S., Roayaei M. and Ghezelbash G. 2011. Carboxymethyl cellulase and filter paperase activity of new strains isolated from Persian Gulf. Journal of Microbiology, 1: 8-16.

Maurhofer M., Keel C., Haas D., and Defago G. 1995. Influence of Plant Species on Disease Suppression by Pseudomonas fluorescens Strain CHA0 with Enhanced Antibiotic Production. Plant Pathology, 44: 40-50.

Mueller J.G., Skipper E.R., Shipe E.R., Grimes L.W., and Wagne S.C. 1988. Intrinsic antibiotic resistance in Bradyrhizobium japonicum. Soil Biology and Biochemistry, 20: 6. 879-882.

Pais I., and Jones J.B. 1997. The handbook of trace elements, St. Lucie Press, Boca Raton, Florida.

       Patten C.L. and Glick B.R. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68:3795–3801.

Patten C.L., and Glick B.R. 2002. Regulation of indole acetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary phase sigma factor RpoS. Canadian Journal of Microbiology, 48:635–642.

Rahimi B., Nejatkhah M P. 2010. Availability, accumulation and elimination of cadmium by Artemia urmiana in different salinities. Journal of Biological and Environmental Sciences, 4(12):149-157.

Rouch D.A., Lee B.T.O., and Morby A.P. 1995. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. Journal of Industrial Microbiology, 14(2): 132-141.

Rudolfs W. 1922. Influence of sulfur oxidation upon growth of soy beans and its effect on bacterial flora of soil. Soil Science; 14:247–62.

Salih H.M., Yahya A.Y., Abdul-Rahem A.M. and Munam B.H. 1989. Availability of phosphorus in a calcareus soil treated with rock phosphate or superphosphate as affected by phosphate dissolving fungi. Plant and Soil, 120:181–5.

Santi M., Keshab C., Dey S. and Pati B.R. 2007. Optimization of cultural and nutritional conditions for indole acetic acid production by a Rhizobium sp. isolated from root nodules of Vigna mungo (L.) Hepper. Research Journal of Microbiology, 2:239–246.

Soltani Toolarood A.A., Saleh-Rastin N., Khavazi K., Asadi Rahmani H. and Abbaszadeh Dehaji P. 2008. Isolation and investigation of plant growth promoting traits in some native fluorescent pseudomonads of Iranian soils. Journal of Soil Research, 21:277-289. (In Persian)

Spaepen S., Vanderleyden J., and Remans R. 2007. Indole-3-acetic acid in microbial and microorganism plant signaling. FEMS Microbiology Reviews, 31:425-448.

Sperber J. I. 1985. The incidence of apatite soulbilizing organisms in the rhizospher. Australian Journal of Agricultural Research, 9: 778-781.

Sridevi M., and Mallaiah K.V. 2007. Bioproduction of indole acetic acid by Rhizobium strains isolated from root nodules of green manure crop, Sesbania sesban L. Iranian Journal of Biotechnology, 5: 178–182. (In Persian)

Tashakori F., Ghorbani Nasrabadi R., Barani Motlagh M. and Movahedi Naeeni S.A.R. 2016. Evaluation of phenotypic and growth promotion characteristics of rhizobia isolated from soybean root nodules. Journal of Soil Management and Sustainable Production, 6:45-64. (In Persian)

Vazquez P. 1996. Mexico Bacterias solubilizadoras de fosfatos inorgánicos asociadas a la rhizosfera de los mangles: Avicennia germinans L. L y Laguncularia racemosa L. Gerth. Tesis para el título de Biologo Marino. Univ. Autónoma de Baja California Sur. La Paz, B.C.S.

Whitelaw M.A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Advances in Agronomy, 69: 99-151.

Yu X., Ai C., Xin L. and Zhou, G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology, 47: 138–145.

Złoch M., Kowalkowski T., Tyburski J. and Hrynkiewicz K. 2017. Modelling of phytoextraction efficiency of microbially stimulated Salix dasyclados L. International Journal of Phytoremediation, 19(12): 1150-1164.