نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا- گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه

2 دانشیار گروه علوم خاک دانشکده کشاورزی دانشگاه ارومیه

3 استاد، گروه علوم خاک دانشکده کشاورزی دانشگاه ارومیه

4 استاد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه

5 استادیار، گروه علوم خاک دانشکده کشاورزی، دانشگاه ارومیه

چکیده

پتاسیم نقش مهمی در افزایش عملکرد و ویژگی‌های کیفی توتون از جمله به‌سوزی برگ آن دارد. به‌منظور ارزیابی تعدادی از عصاره‌گیرهای معمول در استخراج پتاسیم قابل‌جذب گیاه توتون در خاک‌های شمال‌غرب ایران، آزمایش گلخانه‌ای در قالب طرح بلوک‌های کامل تصادفی در 26 نمونه خاک منطقه توتون‌کاری شمال‌غرب ایران با سه تکرار انجام گرفت. در پژوهش حاضر، 14 عصاره‌گیر مورد ارزیابی شامل استات ‌آمونیم یک مولار، استات ‌سدیم  یک مولار، کلرید ‌سدیم یک مولار، مهلیچ یک و سه، کلرید ‌باریم 1/0 مولار، کلرید کلسیم 01/0 مولار، اسید ‌نیتریک 1/0 مولار، اسید ‌نیتریک 01/0 مولار، تترا فنیل ‌بوران‌ سدیم با زمان پنج دقیقه و چهار ساعت، بی‌کربنات‌آمونیوم-دی‌تی‌پی‌ای و آب مقطر برای استخراج پتاسیم قابل‌جذب خاک بود. رابطه پتاسیم عصاره‌گیری شده بین عصاره‌گیرها مثبت و در سطح یک درصد معنی‌دار بود. طبق نتایج، بیش‌ترین ضرایب همبستگی عملکرد وزن خشک برگ با عصاره‌گیر استات‌آمونیوم یک مولار و اسیدنیتریک 1/0 مولار و تترافنیل‌بوران‌سدیم زمان چهار ساعت به‌ترتیب با مقدار 88/0، 87/0 و 85/0 به دست آمد و در خاک‌های با نسبت پتاسیم (استخراج با استات‌آمونیوم یک مولار) به درصد رس کم‌تر از نه، ضرایب همبستگی بین صفات کمّی توتون و انواع عصاره‌گیرها به‌ویژه عصاره‌گیرهای مبتنی بر استخراج پتاسیم تبادلی کاهش یافت. با توجه به بالا بودن ضرایب همبستگی عصاره‌گیرهای استات‌آمونیوم یک مولار و اسیدنیتریک 1/0 مولار با عملکرد برگ (به‌ترتیب با ضریب همبستگی 88/0 و 87/0)، غلظت پتاسیم برگ (به‌ترتیب با ضریب همبستگی 94/0 و 93/0) و مقدار جذب پتاسیم در برگ (به‌ترتیب با ضریب همبستگی 96/0 و 94/0) و هم‌چنین سادگی و اقتصادی بودن آن‌ها، این دو عصاره‌گیر به‌عنوان مناسب‌ترین عصاره‌گیرها تشخیص داده شدند.

کلیدواژه‌ها

عنوان مقاله [English]

Evaluation of Chemical Extractants Ability for Extracting Available Potassium in Some Tobacco-cultivated Soils in Northwest of Iran

نویسندگان [English]

  • Rahmatollah Ranjbar 1
  • Ebrahim Sepehr 2
  • Abas Samadi 3
  • MirHassan Rasouli-Sadaghiani 4
  • Behnam Dovlati 5
  • mohsen barin 5

1 Soil Science Department, Agricultural faculty, Urmia university

2 Assosiate Prof.- Soil science department, Agricultural faculty, Urmia University

3 Prof., Soil Science Department, Agricultural Faculty, Urmia University

4 Prof., Soil Science Department, College of Agriculture, Urmia University

5 Assist. Prof., Soil Science Department, College of Agriculture, Urmia University

چکیده [English]

Potassium (K) plays a vital role in increasing the tobacco yield and controlling important quality parameters such as leaf combustibility. In order to evaluate chemical extractants ability to extract available soil K, a greenhouse experiment was conducted in a complete randomized block design with 26 soil samples with 3 replicates in some tobacco-cultivated soils in northwest of Iran. Evaluated K extractants were 1M NH4OAc, 1M NaOAc, 1M NaCl, 0.1 BaCl2, 0.1M HNO3, 0.01 HNO3, 0.01M CaCl2, NaTPB (5min.), NaTPB (4hs), H2O, NH4HCO3-DTPA, Mehlich I, Mehlich III and Morgan- Wolf methods. There was positive and significant correlation among potassium extracted by all the extracting methods. Leaf yield and potassium concentration in tobacco leaves were highly correlated with potassium extracted with 1M NH4OAC (r= 0.88, r= 0.94, respectively), NaTPB 4h (r=85, r=0.91, respectively), and 0.1 M HNO3 (r= 0.87, r=0.93, respectively). In soils with Kave /clay ratio less than 9, correlation coefficients between tobacco quantitative components and Kext significantly decreased. It was conluded that 1M NH4OAC and 0.1M HNO3 is suitable as soil testing methods for determining available K for tobacco in the soils of tobacco fields in northwest of Iran. These extractants showed high correlation with leaf potassium concentration and tobacco leaf yield. In addition, these two methods are simple procedure and cost effective.

کلیدواژه‌ها [English]

  • Available potassium
  • Chemical extractants
  • Tobacco
References
Abdi S., Ghasemi Fasaei R., Karimian N.A., and Feizian M. 2014. Availability and Release Kinetics of Nonexchangeable Potassium in Some Calcareous Soils of Fars Province. Journal of Water and Soil, 4(28): 766-777. (In Persian)
Ahrari M., Owliaie H.R., Adhami E., and Najafi Ghiri, M. 2017.Study of potassium status and evaluating chemical extractants for estimating available K in some soils of olive orchards of Fars Province. Journal of Water and Soil, 30(3): 835-845. (In Persian)
Barbagelata P.A. 2006. Evaluation of potassium soil tests and methods for mapping soil fertility properties in Iowa corn and soybean fields. Retrospective Thesis and Dissertations, Paper 1797, Ph.D. Dissertation, Iowa State University, USA.
Bar-Yosef B., Magen H., Johnston A.E., and Kirkby E.A. 2015. Potassium fertilization: Paradox or K management dilemma. Renewable Agriculture and Food Systems, 30(2): 115–119.
Beegle D., and Oravec D.C. 1990. Comparison of field calibration for Mehlich 3 P and K with Bray- Kurtz P1 and ammonium acetate K for corn. Communications in Soil Science and Plant Analysis, 21(13-16): 1025- 1036.
Bozhinova R. 2012. Effect of long-term potassium fertilization on the chemical composition of oriental tobacco. Journal of Central European Agriculture, 13(3): 510-518.
Carey P., Curtin D., and Scott C.L. 2011. An improved procedure for routine determination of reserve K in pastoral soils. Plant and Soil, 341(1-2): 461–472.

Chouteau J., and Fauconnier D. 1988. Fertilizing for high quality and yield tobacco. International Potash Institute, Bulletin, (11): 53.

Cox A.E., Joern B.C., and Roth C.B. 1996. Nonexchangeable ammonium and potassium in soils with a modified sodium- tetra- phenyl boron method. Soil Science Society of America Journal, 60(1): 114-120.
 Cox A.E., Joern B.C., Brouder S.M., and Gao D. 1999. Plant available potassium assessment with a modified sodium tetraphenylboron method. Soil Science Society American Journal, 63: 902-911.
Csatho P. 1998. Correlations between two soil extractants and corn leaf potassium contents from Hungarian field trails. Communications in Soil Science and Plant Analysis, 29(11-14): 2149-2160.
Fathi S., Samadi A., Davari M., and Asadi Capurchal S. 2014. Evaluation of extractants for determining corn available K calcareous soils in Hamadan. Journal of Cereals. 4(3): 253-266. (In Persian)
Gholizadeh A.Gh., Karimi A.R., Khorasani R., and Khormali F. 2016. Different forms of soil potassium in tobacco cultivated areas of northern Iran. Journal of Water and Soil Conservation, 23(4): 1-23. (In Persian)
Hosseinpur A.R., Motaghian H.R., and Salehi M.H. 2012. Potassium release kinetics and its correlation with Pinto bean (phaseolous vulgaris) plant indices. Plant and Soil Environment, 58(7): 328–333.
Houba V.J.G., Novozamsky I., Lexmond T.M., and Vander Lee J.J. 1990. Applicability of 0.01 M CaCl2 as a single extraction solution for the assessment of the nutrient status of soils and other diagnostic purposes. Communication in Soil Science and Plant Analysis, 21(19-20): 2281-2290.
 Jones J.B. 1990. Universal soil extractants: Their composition and use. Communication in Soil Scienceand Plant Analysis, 21 (13-16): 1091- 1101.
Kavossi M., and Kalbasi M. 2000. Comparison of Soil Potassium Extracting Methods to Determine Suitable Extractants for Sepeedrood Rice Variety in some Guilan Rice Paddy Fields. Journal of Water and Soil Sciences, 3(4): 57-70. (In Persian)
Khan S.A., Mulvaney R.L., and Ellsworth T.R. 2014. The potassium paradox: Implications for soil fertility, crop production and human health. Renewable Agriculture and Food Systems, 29(1): 3–27.
Knudsen D., Peterson G.A., and Pratt P.F. 1982. Lithium, Sodium and Potassium. In: Page et al. (Ed.), Methods of Soil Analysis, Part 2, Chemical and Micro Biological Properties, American Societyog Agronomy and Soil Science Society of America, Madison, WI, pp. 225-246.
Kumari P.P., and Aiyer R.S. 1993. Soil test and crop response studies for potassium in laterite/red loam soils of Kerala. Journal of Potassium Research, 9(1): 62-65.
Loeppert R.H., and Suarez D.L. 1996. Carbonate and gypsum. In: Sparks D.L. (Ed.), Methods of Soil Analysis, Part 3, Chemical Methods, Soil Science Society of America and American Society of Agronomy, Madison, WI, pp. 437-474.
Madaras M., Koubová M., and Smatanová M. 2014. Long-term effect of low potassium fertilization on its soil fractions. Plant, Soil and Environment, 60(8): 358‒363.
Madaras M., and Koubová M. 2015. Potassium availability and soil extraction tests in agricultural soils with low exchangeable potassium content. Plant, Soil and Environment, 61(5): 234–239.
Marchand M. 2010. Effect of potassium on the production and quality of tobacco leaves. Optimum Crop Nutrition, 24: 7-14.
Martin H.W., and Sparks I. 1983. Kinetics of nonexchangeable potassium release from two coastal plain soils. Soil Science Society American Journal, 49: 371- 376.
McLean E.O. 1976. Exchangeable K levels for maximum crop yields on soils of different cation exchange capacities. Communications in Soil Science and Plant Analysis, 7(9): 823–838.
McLean E.O., and Watson M.E. 1985. Soil measurements of plant-available potassium. In: Munson R.D. (Ed.), Potassium in Agriculture. ASA, CSA and SSSA. Madison, WI, pp. 277- 308.
Mehlich A. 1953. Determination of P, K, Na, Ca, Mg, and NH4. North Carolina Soil Test Division (Mimeo), Department of Agriculture, Raleigh, North Carolina.
Mehlich A. 1984. Mehlich 3 soil test extraction: A modification of Mehlich2 extraction. Communication in Soil Science and Plant Analysis, 15(12): 1409- 1416.
Mutscher H. 1995. Measurement and Assessment of Soil Potassium. International Potash Institute Research Topics, No.4, International Potash Institute. Switzerland. 102p.
Nelson D.W., and Summers L.E. 1996. Total carbon, organic carbon and organic matter. In: Sparks D.L. (Ed.), Methods of Soil Analysis-. Agronomy Monography 9. SSSA and ASA, Madison, pp. 961-1010.
Sadeghi Baniani S., Owliaie H., Adhami E., Najafi Ghiri M. 2017. Release kinetics of non-exchangeable potassium using CaCl2 in relation to some properties of soils of Kohgilouye Province. Applied Soil Research, 5(2): 81-94. (In Persian)
 Peek D.R. 2008. Burley tobacco production guide, Agronomic practices. Virginia Tech, Publication 436-050, Virginia State University.
Richmond M.D., Pearce R.C., and Bailey W.A. 2016. Dark fire- cured tobacco response to potassium and application method. Tobacco Science, 53: 12-15.
Rowell D.L. 1994. Soil Science: Methods and Applications. Taylor and Francis Group, London and New York. 350p.
Samadi A. 2006. Potassium exchange isotherms as a plant availability index in selected calcareous soils of Western Azerbaijan Province. Turkey Journal of Agriculture, 30: 213-222.
Samadi A., Dovlati B., and Barin M .2008. Effect of continuous cropping on potassium forms and potassium adsorption characteristics in calcareous soils of Iran. Australian Journal of Soil Research, 46, 265–272.
Schneider A. 1997. Release and fixation of potassium by a loamy soil as affected by initial water content and potassium status of soil samples. European Journal of Soil Science, 48: 263-271.
Simard R.R., and Zizka J. 1994. Evaluating plant available potassium with strontium chloride. Communication in Soil Science and Plant Analysis, 25(9-10): 1779- 1789.
Thomas G.W. 1996. Soil pH and soil acidity. In: Sparks D.L. (Ed.) Methods of Soil Analysis, Part 3, Chemical Methods, Soil Science Society of America and American Society of Agronomy, Madison, WI, pp. 1123–1184.
Vann M.C., Fisher L.R., Jordan D.L., Hardy D.H., Smith W.D., and Stewart A.M.  2012. The effect of potassium rate on the yield and quality of flue-cured tobacco (Nicotiana tabacum L). Tobacco Science, 49:14–20.
Wang H.Y., Sun H.H., Zhou J.M., Cheng W., Du C.W., and Chen X.Q. 2010. Evaluating plant-available potassium in different soils using a modified sodium tetraphenylboron method. Soil Science, 175(11): 544–551.
Zörb C., Senbayram M., and Peiter E. 2014. Potassium in agriculture Status and perspectives. Journal of Plant Physiology, 171(9): 656‒669.