استفاده از تحلیل چند‌متغیره به منظور ارزیابی کیفیت خاک در اراضی کشاورزی استان زنجان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری, گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

2 استادیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

3 حاصلخیزی و تغذیه

4 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

5 استادیار مرکز تحقیقات کشاورزی و منابع طبیعی، استان زنجان، زنجان

چکیده

چکیده
شاخص کیفیت خاک به عنوان ابزاری کمّی برای ارزیابی تأثیر کاربری و سیستم­های مدیریتی بر شرایط خاک مورد استفاده قرار می­گیرد. هدف از این تحقیق کمّی کردن کیفیت خاک در بوم­سازگان­های کشاورزی استان زنجان با استفاده از تحلیل­های چند­متغیره می­باشد. 154 نمونه خاک از 77 مزرعه در سطح استان زنجان (27 نمونه در کاربری آبی و 50 نمونه در کاربری دیم) از عمق صفر تا 30 و 30 تا 60 سانتی­متری جمع­آوری شد. 24 ویژگی فیزیکی، شیمیایی و زیستی خاک اندازه­گیری شدند. روش تجزیه به مؤلفه­های اصلی به­منظور شناسایی حداقل ویژگی­های مؤثر ((MDS بر کیفیت خاک استفاده شد. دو گروه از حداقل ویژگی­های مؤثر با بررسی جداگانه­ی ویژگی­های فیزیکی، شیمیایی و زیستی ((MDS1 و بررسی کل ویژگی­ها (MDS2) تعیین شد و قابلیت روش­های خطی و غیر­خطی جهت تهیه شاخص کیفیت خاک مورد بررسی قرار گرفت. چهار شاخص برای کیفیت خاک با استفاده از MDS1 و  MDS2و روش امتیازدهی خطی و غیر­خطی محاسبه شد. نیتروژن کل، فسفر، سدیم، روی و مس قابل جذب، کربن زیست­توده میکروبی، شاخص سهم میکروبی، میانگین وزنی قطر خاکدانه و جرم مخصوص ظاهری به عنوان MDS1 تعیین شدند. کربن آلی، فسفر، سدیم، روی و مس قابل جذب، شاخص سهم میکروبی، میانگین وزنی قطر خاکدانه و ضریب جذب­پذیری خاک به عنوان MDS2 شناسایی شدند. هر دو روش کارایی کافی برای شناسایی حداقل ویژگی­های مؤثر بر کیفیت خاک را داشتند. شاخص­های خطی کیفیت خاک (p˂0.001) نسبت به شاخص­های غیر­خطی(p˂0.01)  قابلیت بیشتری برای تفکیک کیفیت خاک بین دو کاربری دیم و آبی نشان دادند. شاخص کیفیت محاسبه­شده با استفاده از تابع خطی و MDS1 نشان داد کیفیت خاک در کاربری آبی (524/0) شرایط بهتری نسبت به کاربری دیم (433/0) دارد. شاخص کیفیت خاک محاسبه شده با استفاده از MDS2 نیز روند مشابهی را بین کاربری آبی (515/0) و دیم (433/0) نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Using Multivariate Analysis to Evaluate Soil Quality in Agricultural Lands of Zanjan Province

نویسندگان [English]

  • Somayeh Hamidi Nehrani 1
  • Mohammad Sadegh Askari 2
  • Saeed Saadat 3
  • Mohammad Amir Delavar 4
  • Mehdi Taheri 5
1 Department of Soil Science, Faculty of Agriculture, University of Zanjan
2 Assistant Professor, Department of Soil Science, Faculty of Agriculture, University of Zanjan
3 Assistant Professor, Soil and Water Research Institute, Tehran
4 Associate Professor, Department of Soil Science, Faculty of Agriculture, University of Zanjan
5 Assistant Professor, Agricultural and Natural Resources Research Center, Zanjan Province
چکیده [English]

Abstract
Soil quality (SQ) index is used as a quantitative tool for assessing the impact of land use and management systems on soil condition. The aim of this study was to quantify SQ under agricultural ecosystems in Zanjan province using multivariate analyses. 154 soil samples were collected from 77 farms in Zanjan province (27 sites under irrigated and 50 sites under rain-fed land use) at 0-30 and 30-60 cm depths. 24 soil physical, chemical and biological properties were measured. Principal component analysis was used to identify minimum data set (MDS) for assessing SQ. Two groups of MDS were determined by considering physical, chemical and biological properties separately (MDS1), and by using all measured soil properties (MDS2). The capability of linear or non-linear approaches to develop SQ index was investigated. Four SQ indices were calculated using MDS1 and MDS2, linear and non-linear scoring methods. Total nitrogen, available phosphorus, sodium, zinc and copper, microbial biomass carbon, microbial quotient index, aggregate stability and bulk density were determined as the MDS1. Soil organic carbon, available phosphorus, sodium, zinc and copper, microbial quotient index, aggregate stability and sorptivity were identified as the MDS2. Both methods had enough efficiency to identify MDS for assessing SQ. The linear SQ indices (p˂0.001) showed higher capability than non-linear indices (p˂0.01) to differentiate SQ between rain-fed and irrigated land uses. The SQ index calculated using linear function and MDS1 indicated SQ of irrigated land use (0.524) had a better condition compared to rainfed land use (0.433). The SQ index calculated using MDS2 also indicated a similar trend between irrigated (0.551) and rainfed land use (0.433).

کلیدواژه‌ها [English]

  • Irrigated land use
  • principal component analysis
  • Rainfed land use
  • Soil management
Refrences

Alef K. 1995. Soil respiration. In: Alef K., and Nannipieri P. (Ed.), Methods in Soil Microbiology and Biochemistry, Academic Press Inc., San Diego, pp. 214-215.

Anderson T.H., and Domsch K.H. 1993. The metabolic quotient (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology and Biochemistry, 25: 393–395.

Anderson T.H. 2003. Microbial eco-physiological indicators to asses soil quality. Agriculture, Ecosystems and Environment, 98: 285–293.

Armenise E., Redmile-Gordon M.A., Stellacci A.M., Ciccarese A., and Rubino P. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research,130: 91-98.

Askari M.S., and Holden N.M. 2015. Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research,150: 57-67.

Banaei M.H. 2000. Soil resources and use potentiality map of Iran, Soil and Water Research Institute. Tehran. (In Persian)

Bastida F., Zsolnay A., Hernández T., and García C. 2008. Past, present and future of soil quality indices: A biological perspective. Geoderma, 147: 159-171.

Beheshti A., Raiesi F., and Golchin A. 2011. The effects of land use conversion from pasturelands to croplands on soil microbiological and biochemical indicators. Journal of Water and Soil, 25(3): 548-562. (In Persian)

Bini D., Alcantara C., Banhos K., Kishino N., Andrade G., Zangaro W., and Nogueira M. 2013. Effects of land use on soil organic carbon and microbial processes associated with soil health in southern Brazil. European Journal of Soil Biology, 55: 117-123.

Black C.A., Evans D.D., White J.L., Ensminger L.E., and Clark F.E. 1965. Methods of Soil Analysis. Part 2. "Chemical and Microbiological Properties". American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, USA, Agronomy Series No. 9, 801p.

Brejda J.J., Karlen D. L., Smith J.L., and Allan D.L. 2000. Identification of regionals quality factors and indicators II. Northern Mississippi Loess Hills and Palouse Prairie. Soil Science Society of America Journal, 64(6): 2125-2135.

Carter M.R., and Gregorich E.G. 2008. Soil Sampling and Methods of Analysis. 2nd Ed. Canadian Society of Soil Science, CRC Press, Taylor and Francis Group, Boca Raton, Florida, 1204p.

D’Hose T., Cougnon M., De Vliegher A., Vandecasteele B., Viaene N., Cornelis W., Van Bockstaele E., and Reheul D. 2014. The positive relationship between soil quality and crop production: A case study on the effect of farm compost application. Applied Soil Ecology, 75: 189–198.

Doran J.W., and Parkin T.B. 1994. Quantitative indicators of soil quality: a minimum data set. In: Doran J.W., and Jones A.J. (Ed.), Methods for Assessing Soil Quality. Special Publication 49. Soil Science Society of America, Madison, pp. 25–37.

Dose H.L., Fortuna A.M., Cihacek L.J., Norland J., DeSutter T.M., Clay D.E., and Bell J. 2015. Biological indicators provide short term soil health assessment during sodic soil reclamation. Ecological Indicators, 58: 244–253.

Fernandes J.C., Gamero C.A., Rodrigues J.G.L., and Mirás-Avalos J.M. 2011. Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil and Tillage Research,112(2): 167-174.

Field A. 2009. Discovering statistics using SPSS. London: Sage Publications, 821p.

Gebeyehu G., and Soromessa T. 2018. Status of soil organic carbon and nitrogen stocks in Koga Watershed Area, Northwest Ethiopia. Agriculture and Food Security, 7:9

Golchin A., and Asgari H. 2008. Land use effects on soil quality indicators in north-eastern Iran. Australian Journal of Soil Research, 46: 27–36.

GorjiM., Kakeh J., and Alimohammadi A. 2017. Quantitative soil quality assessment in different land uses at some Parts of south eastern of Qazvin. Iranian Journal of Soil and Water Research,47(4): 775-784. (In Persian)

Grossman R.B., and Reinsch T.G. 2002. 2.1 Bulk density and linear extensibility. In: Dick A.W. (Ed.), Methods of Soil Analysis: Part 4 Physical Methods. Soil Science Society of America Book Series, Madison, pp. 201–228.

Guo L., Sun Z., Ouyang Z., Han D., and Li F. 2017. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River. Catena, 152: 135–143.

Jamal A., Delavar M.A., Naderi A., Nourieh N., Medi B., and Mahvi A.H. 2018. Distribution and health risk assessment of heavy metals in soil surrounding a lead and zinc smelting plant in Zanjan, Iran. Human and Ecological Risk Assessment: An International Journal, 1-16.

Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G., Harris R.F. and Schuman G.E. 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61: 4–10.

Kemper W.D., and Rosenau R.C. 1986. Aggregate stability and size distribution. In: Klute A. (Ed.), Methods of Soil Analysis. Part I: Physical Analysis. Soil Science Society of America, Madison, pp. 425–442.

Klute A., and Dirkson C. 1986. Hydraulic conductivity and diffusivity: Laboratory methods. In: Klute A. (Ed.), Methods of Soil Analysis, Part 1. American Society of Agronomy, Madison, pp. 687–734.

Lima A.C.R., Brussaard L., Totola M.R., Hoogmoed W.B., de Goede R.G.M. 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology, 64: 194–200.

Liu J., Wu L., Chen D., Li M., and Wei C. 2017. Soil quality assessment of different Camellia oleifera stands in mid-subtropical China. Applied Soil Ecology,113: 29-35.

Masto R.E., Chhonkar P.K., Singh D., and Patra A.K. 2008. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manur-ing for 31 years in the semi-arid soils of India. Environmental Monitoring and Assessment, 136: 419–435.

Mehlich A. 1953. Determination of P, Ca, Mg, K, Na and NH4 by North Carolina Soil Testing Laboratories. University of North Carolina, Raleigh, 53p.

Misaghi F., Delgosha F., Razzaghmanesh M., and Myers B. 2017. Introducing a water quality index for assessing water for irrigation purposes: A case study of the Ghezel Ozan River. Science of the Total Environment, 589: 107-116.

Nabiollahi K., Golmohamadi F., Taghizadeh-Mehrjardi R., Kerry R., and Davari M. 2018. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318: 16–28.

Nabiollahi K., Taghizadeh-Mehrjardi R., Kerry R., and Moradian S. 2017. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological indicators, 83: 482-494.

Nath A.J., and Lal R. 2017. Effects of tillage practices and land use management on soil aggregates and soil organic carbon in the north Appalachian region, USA. Pedosphere, 27: 172-176.

Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. In: Page A.L. (Ed.), Methods of Soil Analysis. Part 2. 2nd Ed. Agron. Monogr. 9. Soil Science Society of America and American Society of Agronomy, Madison, pp. 539-579.

PBO. 2016. Plan and Budget Organization, Statistical Center of Iran (SCI), Iran Statistical Yearbook, 102p. (In Persian)

Philip J. 1957. The theory of infiltration: 4: sorptivity and algebraic infiltration equations. Soil Science, 84: 257–335.

Pierzynski G.M. 2000. Methods of Phosphorus Analysis for Soils, Sediments, Residuals, and Waters. North Carolina State University, Raleigh, 396p.

Qi Y., Darilek J.L., Huang B., Zhao Y., Sun W., and Gu Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149: 325–334.

Rahimi S., Afyuni M., Khoshgoftarmanesh A.H., and Noruzi M. 2015. Assessment of soil quality index with Zinc fertilizer and its concentration wheat grain. Journal of Water and Soil Science, 19(71): 47-57. (In Persian)

Rahmanipour F., Marzaioli R., Bahrami H.A., and Fereidouni Z. 2014. Assessment of soil quality indices in agricultural lands of Qazvin Province, Iran. Ecological Indicators, 40: 19–26.

Raiesi F., 2017. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecological Indicators, 75: 307-320.

Reynolds W.D., Drury C.F., Yang X.M., and Tan C.S. 2008. Optimal soil physical quality inferred through structural regression and parameter interactions. Geoderma, 146(3–4): 466-474.

Rezaei S.A., Gilkes R.J., and Andrews S.S. 2006. A minimum data set for assessing soil quality in rangelands. Geoderma, 136: 229–234.

Rhoades J.D. 1982. Cation exchange capacity. In: Page A.L. (Ed.), Methods of Soil Analysis, Part 2: Chemical and Mineralogical Properties. Agron. No. 9, 2nd Ed., American Society of Agronomy, Madison, pp. 149- 157.

Shukla M.K., Lal R., and Ebinger M. 2006. Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2): 194-204.

Simon A., Dhendup k., Rai P.B., and Gratzer G. 2018. Soil carbon stocks along elevational gradients in Eastern Himalayan mountain forests. Geoderma Regional, 12: 28–38.

Toledo D.M., Galantini J., Dalurzo H., Vazquez S., and Bollero G. 2013. Methods for assessing the effects of land use changes on carbon stocks of subtropical oxisols. Soil Science Society of America Journal, 77(5): 1542-1552.

Vance E.D., Brookes P.C., and Jenkinson D.S. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biology and Biochemistry, 19: 703–707.

Walker D.J., and Bernal M.P. 2008. The effects of olive mill waste compost and poultry manure on the availability and plant uptake of nutrients in a highly saline soil. Bioresource Technology, 99: 396–403.

Walsh A. 1955. The application of atomic absorption spectra to chemical analysis. Spectrochimica Acta, 7: 108–117.

Yao R., Yang J., Gao P., Zhang J., and Jin W. 2013. Determining minimum data set for soil quality assessment of typical salt-affected farmland in the coastal reclamation area. Soil and Tillage Research,128: 137-148.

Yu P., Han D., Liu S., Wen X., Huang Y., and Jia H. 2018. Soil quality assessment under different land uses in an alpine grassland. Catena,171: 280-287.

Zanjan Province Governorate. 2014. Report of the Strategic Development Plan of Agricultural and Watershed of Zanjan Province Based on the Meetings of Agricultural and Water Governance Room. Planning and Budget Office, 11p. (In Persian)

Zhang C., Xue S., Liu G.B., and Song Z.L. 2011. A comparison of soil qualities of different revegetation types in the Loess Plateau, China. Plant and Soil,347(1-2): 163-178.

Zhang Y., Xu X., Li Z., Liu M., Xu C., Zhang R., and Luo W. 2019. Effects of vegetation restoration on soil quality in degraded karst landscapes of southwest China. Science of The Total Environment,650: 2657-2665.