اثر کلات‌های آهن و روش کاربرد آن‌ها بر وضعیت تغذیه‌ای آهن گیاه لوبیا (Phaseolus vulgaris) در یک خاک آهکی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهدو دانشکده کشاورزی، بخش آموزش

2 دانشگاه ارومیه

3 گروه علوم خاک-دانشگاه فردوسی مشهد

4 گروه شیمی-دانشگاه پیام نور مشهد

چکیده

شناسایی و ساخت کلات‌های آلی نوین آهن با کارآیی بیشتر نسبت به کلات‌های سنتزی رایج، برای بهبود وضعیت تغذیه‌ای آهن در خاک‌های آهکی ایران، ضروری به نظر می‌رسد. در این پژوهش، ابتدا کلات‌های اسیدآمینه تیروزین- آهن (Fe-Tyr) و کیتوسان هیدرولیز شده اسیدی- آهن (Fe-Chi) با روش‌های آزمایشگاهی ساخته و سپس برخی از ویژگی‌های آنها شناسایی شد. آزمایشی گلخانه­ای به صورت فاکتوریل، در قالب طرح کاملاً تصادفی، با سه تکرار طراحی شد. فاکتورهای آن شامل سه نوع کلات آهن، Fe-Chi، Fe-Tyr و Fe-EDDHA (شاهد) و سه روش مصرف خاکی، کود آبیاری و محلول‌پاشی بر روی گیاه لوبیا بودند. گیاهان تا تولید دانه رشد کردند و  برخی پارامترهای رشدی گیاه و مقدار آهن کل در شاخسار و ریشه تعیین و فعالیت آنزیم‌های FCR (Ferric Chelate Reductase) ریشه و برگ اندازه‌گیری شدند. نتایج داده‌های آزمایشگاهی و نظری نشان دادند که بین اسید آمینه تیروزین و کیتوسان به عنوان لیگاند و فلز آهن، کمپلکس تشکیل شده است. نتایج نشان دادند که بیشترین وزن خشک شاخسار گیاه در روش مصرف خاکی Fe-Chi و کود ‌آبیاری Fe-Tyr مشاهده شد. همچنین، مصرف کود آبیاری Fe-Chi، وزن خشک ریشه را نسبت به شاهد به طور معنی­داری افزایش داد. بیشترین مقدار آهن کل (3/10 میلی گرم در گلدان) با کاربرد Fe-Chi به صورت مصرف خاکی در شاخسار گیاه لوبیا مشاهده شد که نسبت به Fe-EDDHA، 36 درصد جذب آهن بیشتری را نشان داد. رابطه متقابل مثبت و معنی­‌داری بین وزن خشک شاخسار و مقدار آهن و نیتروژن در شاخسار گیاه لوبیا مشاهده شد. کاربرد خاکی Fe-Chi و کود ‌آبیاری Fe-Tyr، بیشترین میاتگین فعالیت FCR ریشه را نشان دادند. در روش‌های محلول‌پاشی و کود‌ آبیاری Fe-Tyr، فعالیت FCR برگ تا روز40ام از شروع آزمایش روند صعودی داشت. مصرف خاکی کلات Fe-Chi و محلول‌پاشی Fe-Tyr در طول دوره رشد گیاه، وضعیت تغذیه‌ای آهن را در گیاه لوبیا را بهبود بخشید.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Iron Chelates and their Application Methods on Iron Nutrition Status of Bean Plant (Phaseolus vulgaris) in a Calcareous Soil

نویسندگان [English]

  • atena mirbolook 1
  • MirHassan Rasouli-Sadaghiani 2
  • Ebrahim Sepehr 2
  • Amir lakzian 3
  • Mohammad Hakimi 4
1 Dept of Soil science, Urmia University
2 Dept of Soil Sci. Urmia Uni
3 Dept of Soil Sci, Ferdowsi University of Mashad
4 Chemistry Department, Payame Noor University, 19395-4697 Tehran, I. R. Iran.
چکیده [English]

Identification and synthesis of new organic iron chelates with higher efficiency than conventional synthetic chelates seems to be necessary to improve the nutritional status of iron in calcareous soils of Iran. In this study, first the amino acid chelates of tyrosine-iron (Fe-Tyr) acid-hydrolyzed chitosan-iron (Fe-Chi) were synthesized by laboratory methods and then some of their properties were characterized. A greenhouse experiment was designed as a factorial experiment based on completely randomized design with three replications including three types of iron chelate, Fe-Chi, Fe-Tyr and Fe-EDDHA (control) and three methods of soil application, fertigation and foliar application. Bean plants were grown and some growth parameters and total iron content in shoot and root were determined. The activity of root and leaf FCR (Ferric Chelate Reductase) enzymes were measured. The results of experimental and theoretical data showed that the tyrosine and chitosan were complexed with iron metal. The results showed that the highest shoot dry weight was observed in soil application of Fe-Chi and fertigation of Fe-Tyr. Also, fertigation of Fe-Chi increased root dry weight compared to control significantly. The highest content of total iron (10.3 mg pot-1) was observed in soil application of Fe-Chi in bean shoots which showed 36% higher Fe uptake than Fe-EDDHA. There was a significant positive correlation between shoot dry weight with iron and nitrogen content in shoots of bean plants. Investigation of root FCR enzyme activity revealed that soil application of Fe-Chi and fertigation of Fe-Tyr had the highest mean of FCR activity. In the foliar and fertigation application of Fe-Tyr, leaf FCR activity increased to 40 days after the start of the experiment. Soil application of Fe-Chi and foliar of Fe-Tyr during plant growth can improve the nutritional status of iron in bean plant

کلیدواژه‌ها [English]

  • Amino acid
  • Chelate
  • Chitosan
  • Foliar
  • Soil application
Al-Busaidi P., Cookson L., and Yamamoto T. 2005. Methods of pH determination in calcareous soil: use of electrolytes and suspension effect. Soil Research. 43: 541-545.

Aciksoz S. B., Yazici A., Ozturk, L., and Cakmak I. 2011. Biofortification of wheat with iron through soil and foliar application of nitrogen and iron fertilizers. Plant and Soil, 349: 215-225.

Aranaz I., Mengíbar M., Harris R., Paños I., Miralles B., Acosta N., Galed G. and Heras, Á. 2009. Functional characterization of chitin and chitosan. Current Chemical Biology, 3: 203-230.

Belokon Y. N., Bakhmutov V. I., Chernoglazova N. I., Kochetkov K. A., Vitt S. V., Garbalinskaya N. S. and Belikov, V. 1988. General method for the asymmetric synthesis of α-amino acids via alkylation of the chiral nickel (II) Schiff base complexes of glycine and alanine. 305-312.

Bernkop Schnürch, A., and Dünnhaupt, S.2012. Chitosan-based drug delivery systems. Biopharmaceutics, 81: 463-469.

Bouyoucos G.J. 1936. Direction for making mechanical analysis of soil by the hydrometer method. Journal of Soil Science, 41: 225-228.

Bremner J. M., and Mulvaney C. 1982. Nitrogen-Total. In: Page A.L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. pp: 595-624.

Bruckner M. Z. 2012. Water and Soil Characterization, pH and Electrical Conductivity. Microbial Life Educational Resources, Montana State University Bozeman.

Brüggemann W., Maas-Kantel K., and Moog P. 1993. Iron uptake by leaf mesophyll cells: the role of the plasma membrane-bound ferric-chelate reductase. Planta, 190: 151-155.

Caiqin Q., Ling X., Yumin D., Xiaowen S., and Jiawei C. 2002. A new cross-linked quaternized-chitosan resin as the support of borohydride reducing agent. Reactive and Functional Polymers, 50: 165-171.

Cakmak I., and Marschner H. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascrobate peroxidase, and glutathione reductase in bean leaves. Plant Physiology, 98: 1222-1227.

Çakmak İ., Torun A., Millet E., Feldman M., Fahima T., Korol A., Nevo E., Braun H., Özkan H., 2004. Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Science and Plant Nutrition, 50: 1047-1054.

Chaney R. L., Brown J. C. and Tiffin L. O. 1972. Obligatory reduction of ferric chelates in iron uptake by soybeans. Plant Physiology, 50: 208-213.

Chapman H. D., and Pratt F. 1961. Methods of Analysis for Soils, Plants and Waters, University of California Div. pp: 168-169.

Curie C., Cassin G., Couch D., Divol F., Higuchi K., Le Jean M., Misson J., Schikora A., Czernic P., and Mari S. 2008. Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Annals of Botany, 103: 1-11.

De La Guardia M. D., and Alc´ Ntara E. 1996. Ferric chelate reduction by sunflower (Helianthus annuus L.) leaves: influence of light, oxygen, iron-deficiency and leaf age. Journal of Exprimental Botany 47: 669-675.

Dias A., Cortez A., Barsan M., Santos J., Brett C. and De Sousa H. 2013. Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustainable Chemistry and Engineering, 1: 1480-1492.

Dzung N. A., Khanh V., and Dzung, T. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymer, 84: 751-755.

Elfaki J. T., Gafer M. O., Sulieman M. M., and Ali M. E. 2016. Assessment of calcimetric and titrimetric methods for calcium carbonate estimation of five soil types in central Sudan Egypt Journal Soil Science, 58: 383-397.

Ghasemi S., Khoshgoftarmanesh A. H., Afyuni M. and Hadadzadeh H. 2013a. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. European Journal of Agronomy, 45: 68-74.

Ghasemi S., Khoshgoftarmanesh A. H., Hadadzadeh H. and Afyuni M. 2013b. Synthesis, characterization, and theoretical and experimental investigations of zinc (II)–amino acid complexes as ecofriendly plant growth promoters and highly bioavailable sources of Zinc. Journal of Plant Growth Regulation, 32: 315-323.

Ghasemi S., Khoshgoftarmanesh A. H., Hadadzadeh H. and Jafari M. 2012. Synthesis of iron-amino acid chelates and evaluation of their efficacy as iron source and growth stimulator for tomato in nutrient solution culture. Journal of Plant Growth Regulation, 31: 498-508.

González-Vallejo E. B., Morales F., Cistué L., and Abadıa A. 2000. Iron deficiency decreases the Fe (III)-chelate reducing activity of leaf protoplasts. Plant Physiology, 122: 337-344.

Hangarter R. P., and Stasinopoulos T. C. 1991. Effect of Fe-catalyzed photooxidation of EDTA on root growth in plant culture media. Plant Physiology, 96: 843-847.

HSU, H.-H. 1986. Chelates in plant nutrition.

Hudson S. M., Jenkins D. 2002. Chitin and chitosan. Journal of Uropan Science and Tchnology, 23: 341-358.

Il'ina A., Varlamov H. 2004. Hydrolysis of chitosan in lactic acid. Journal of Biology and Microbiology, 40: 300-303.

Jämtgård S., Näsholm T. and Huss-Danell K. 2008. Characteristics of amino acid uptake in barley. Plant and Soil, 302: 221-231.

Jones D. and Hodge A. 1999. Biodegradation kinetics and sorption reactions of three differently charged amino acids in soil and their effects on plant organic nitrogen availability. Soil Biology and Biochemistry, 31: 1331-1342.

Kang G., C. Wang G. Sun and Z. 2003. Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environmental and Experimental Botany. 50: 9-15.

Kazem Souri M., Sooraki F. Y., and Moghadamyar M. 2017. Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Horticulture Environment and Biotechnology, 58: 530-536.

Kosegarten H. U., Hoffmann B. and Mengel K. 1999. Apoplastic pH and Fe3+ reduction in intact sunflower leaves. Plant Physiology, 121: 1069-1079.

Kulikov S., Tikhonov V., Blagodatskikh I., Bezrodnykh E., Lopatin S., Khairullin R., Philippova Y. and Abramchuk S. 2012. Molecular weight and pH aspects of the efficacy of oligochitosan against methicillin-resistant Staphylococcus aureus (MRSA). Carbohydrate Polymers, 87: 545-550.

Kutman U. B., Yildiz B. and Cakmak. 2011. Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of Soil Science and Plant Nutrition, 53: 118-125.

Kuznetsov V.V., Shevyakova N.I. 2007. Polyamines and stress tolerances of plants. Plant Stress, 1:50-71.

Lindsay W. 1972. Zinc in Soils and Plant Nutrition. Advances in Agronomy, 24: 147-186.

Lowe A., Rafferty-Mcardle S. M. and Cassells A. C. 2012. Effects of AMF-and PGPR-root inoculation and a foliar chitosan spray in single and combined treatments on powdery mildew disease in strawberry. Agricultural and Food Science, 21: 28-38.

Lucena J. 2000. Effects of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review. Journal of Plant Nutrution, 23: 1591-1606.

Manthey J., Mccoy D., Crowley D. 1994. Stimulation of rhizosphere iron reduction and uptake in response to iron deficiency in citrus rootstocks.Plant Biology and Biochemistry.France press.

Marschner H. 1995. Function of mineral nutrients: micronutrients. Mineral Nutrition of High plants.

Marschne H., and Römheld V. 1994. Strategies of plants for acquisition of iron. Plant and Soil, 165: 261-274.

Mengel K. 1994. Iron availability in plant tissues-iron chlorosis on calcareous soils. Journal of Plant and Soil, 165: 275-283.

Metsärinne S., Rantanen P., Aksela R. and Tuhkanen T. 2004. Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid (DTPA) in the presence and absence of Fe (III). Chemosphere, 55: 379-388.

Mikami Y., Saito A., Miwa E. and Higuchi K. 2011a. Allocation of Fe and ferric chelate reductase activities in mesophyll cells of barley and sorghum under Fe-deficient conditions. Plant Physiology and Biochemistry, 49: 513-519.

Mondal M. A., Malek M., Puteh A., Ismail M., Ashrafuzzaman M., and Naher, L. 2012. Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science 6, 918.

Nakamoto, K. and NAKAMOTO, K. 1977. Infrared and Raman spectra of inorganic and coordination compounds, Wiley.

Nomiya K. and Yokoyama H. 2002. Syntheses, crystal structures and antimicrobial activities of polymeric silver (I) complexes with three amino-acids [aspartic acid (H 2 asp), glycine (Hgly) and asparagine (Hasn)]. Journal of the Chemical Society, 12: 2483-2490.

Ojeda M., Schaffer B. and Davies F. 2005. Root and leaf ferric chelate reductase activity in pond apple and soursop. Journal of Plant Nutrition, 27: 1381-1393.

Prabaharan M., and Mano J. 2004. Chitosan-based particles as controlled drug delivery systems. Drug Delivery, 12: 41-57.

Renella G., Landi L., and Nannipieri P. 2004. Degradation of low molecular weight organic acids complexed with heavy metals in soil. Geoderma, 122: 311-315.

Rombolà A., Brüggemann W., Tagliavini M., Marangoni B. and Moog P. 2000a. Iron source affects iron reduction and re‐greening of kiwifruit (Actinidia deliciosa) leaves. Journal of Plant Nutrition,  23: 1751-1765.

Romera F., Alcantara E., and De La Guardia M. 1991. Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. Iron Nutrition and Interactions in Plants. Springer.

Smith B. R., and Cheng, L. 2007. Iron assimilation and carbon metabolism in ‘Concord’grapevines grown at different pHs. Journal of the American Society for Horticultural Science, 132: 473-483.

Svenson A., Kaj L., and Björndal H. 1989. Aqueous photolysis of the iron (III) complexes of NTA, EDTA and DTPA. Chemosphere, 18: 1805-1808.

Tietze L. 1996. Domino reactions in organic synthesis. Chemical Review, 96: 115-136.

Vadas T. M., Zhang X., Curran A. M., and Ahner B. A. 2007. Fate of DTPA, EDTA, and EDDS in hydroponic media and effects on plant mineral nutrition. Journal of Plant Nutrition, 30: 1229-1246.

Villén M., Lucena, J. J., Cartagena M. C., Bravo R., García-Mina J., De La Hinojosa M. F. 2007. Comparison of two analytical methods for the evaluation of the complexed metal in fertilizers and the complexing capacity of complexing agents. Journal of Biology and Chemistry, 55: 574-584.

Wahba H., Motawe H., Ibrahim A. and Mohamed A. The influence of amino acids on productivity of Urtica pilulifera plant.  3rd International Conference of Pharmaceutical and Drug Industries Division, National Research Council, Cairo, 2007.

Walkley A. 1947. Organic carbon by the Walkley-Black oxidation procedure. Soil science, 63: 251-264.

Wang X., Du Y., and Liu H. 2004. Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers, 56: 21-26.

Waters B. M., Uauy C., Dubcovsky J., and Grusak M. A. 2009. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. Journal of Exprimental Botany, 60: 4263-4274.

Yildiz Dasgan H., Ozturk L., Abak K. and Cakmak I. 2003. Activities of Iron‐Containing Enzymes in Leaves of Two Tomato Genotypes Differing in Their Resistance to Fe Chlorosis. Journal of Plant Nutrition, 26: 1997-2007.

Zhou Z., Zhou J., Li R., Wang H. and Wang J. 2007. Effect of exogenous amino acids on Cu uptake and translocation in maize seedlings. Plant and Soil, 292: 105-117.