نوع مقاله : مقاله پژوهشی

نویسندگان

دانشگاه یزد

چکیده

شوری خاک ناشی از فرآیندهای طبیعی یا انسانی و یک خطر عمده زیست محیطی می­باشد. همچنین کمبود رطوبت خاک که تأثیر منفی بر فعالیت­های کشاورزی در مناطق کوهستانی که اکثر آب و هوای نیمه مرطوب می­گذارنند دارد. هدف اصلی این تحقیق نقشه­برداری از شوری و رطوبت خاک واقع در قسمت غرب دریاچه ارومیه در کشور ایران با استفاده از تصاویر ماهواره­های سنتینل 1 و 2 همراه با پنج الگوریتم شبکه عصبی می­باشد. مدل­های یادگیری، شبکه­های عصبی چند لایه (MLP-NN)، عملکرد تابش پایه شعاعی (RBF-NN)، فرآیندهای گاوسی (GP)، رگرسیون بردار پشتیبان (SVR) و جنگل­های تصادفی (RF) می­باشند. ابتدا با استفاده از الگوریتم­های مختلف شاخص­های مختلف شوری و رطوبت خاک بدست آورده شدند. سپس با استفاده از 60 نمونه خاک که از عمق 5 تا 15 سانتی­متری خاک در طول بررسی میدانی در تاریخ 18/06/1398 همراه با زمان تصویر برداری سنتینل 1 و 2 برداشت شد، دقت­سنجی انجام گرفت. در شاخص­های شوری خاک مورد استفاده در تصاویر اپتیکی شاخص Salinity index با 96/0 R2=  شاخص بهینه برای برآورد شوری خاک با توجه به مقایسه با داده­های زمینی بود. شاخص NDWI  نیز برای برآورد رطوبت در تصاویر اپتیکی بادقت 0.89 دارای بالاترین میزان دقت در شاخص­های مورد استفاده این پژوهش بوده است. میزان دقت برآورد رطوبت و شوری خاک در تصاویر رادار به ترتیب 80/0 R2= و 89/0 R2= بوده است. عملکرد پنج الگوریتم برای مدل سازی نیز با استفاده از خطای میانگین مربعات (RMSE) و ضریب همبستگی (R2) ارزیابی و مقایسه شد. نتایج نشان دادند که مدل GP بالاترین عملکرد پیش­بینی ­   ( RMSE = 2و 82/0 R2=) را نسبت به سایر مدل­های یادگیری ماشین مورد استفاده در این تحقیق داشته است.

کلیدواژه‌ها

عنوان مقاله [English]

Modeling and Mapping of Soil Salinity and Moisture Using Spectral and Radar Remote Sensing

نویسندگان [English]

  • Salah Shahmoradi
  • Hamid Reza Ghaffarian Malmiri
  • Mohammad Sharifi Pichoon

Yazd University

چکیده [English]

Soil salinity is caused by natural or human processes and is a major environmental hazard. There is also a lack of soil moisture which has a negative impact on agricultural activities in mountainous areas where most of the climate is semi-humid. The main purpose of this study is to map soil salinity and moisture located in the western part of Lake Urmia in Iran using Sentinel 1 and 2 satellites along with five neural network algorithms to model soil salinity and moisture. Learning models are multilayer neural networks (MLP-NN), radial basis radiation performance (RBF-NN), Gaussian processes (GP), support vector regression (SVR), and random forests (RF). First, different salinity and soil moisture indices were obtained using different algorithms, then using 60 soil samples at a depth of 5 to 15 cm during a field survey on 06/18/1398 along with the image time. Sentinel 1 and 2 were harvested, precision was performed. In the soil salinity indices used in optical images, the salinity index with an accuracy of 0.96 was the best indicator for estimating soil salinity according to comparison with terrestrial data. The NDWI index also had the highest accuracy for estimating moisture in optical images with an accuracy of R2= 0.89. The accuracy of estimating soil moisture and salinity in radar images was R2=0.80 and R2= 0.89, respectively. The performance of five algorithms for modeling was also evaluated and compared using mean square error (RMSE) and correlation coefficient (R2). The results showed that the GP model had the highest predictive performance (RMSE = 2 and R2 = 0.82) and was better than other machine learning models.

کلیدواژه‌ها [English]

  • Optical images
  • Urmia Lake
  • Sentinel
  • soil moisture and salinity indices
  • artificial neural network
Bishop C. M. 2006. Pattern Recognition and Machine Learning. springer.4(4):738.
Beaudoin A., Gwyn Q.H.J. and T. Le Toan. 1990. Sar observation and modelling of the c-band backscatter variability due to multi-scale geometry and soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 28: 886-894.
Dobson M. C., Ulaby F. T., Hallikainen M. T. and El-Rayes M. A. 1985. Microwave dielectric behavior of wet soil-part ii: dielectric mixing models. IEEE Transactions on Geoscience and Remote Sensing, 1: 35-46.
Engman E. T., and Chauhan N. 1995. Status of microwave soil moisture measurements with remote sensing. Remote Sensing of Environment, 51(1):189-198.
Fernandez-Buces. N. C. Siebe. S. Cram. and Palacio J. 2006. Mapping soil salinity using a combined spectralresponse index for bare soil and vegetation: A case study in the former lake texcoco, mexico. Journal of Arid Environments, 65: 644–667.
Filipponi F. 2019. Sentinel-1 grd preprocessing workflow. in multidisciplinary digital publishing institute proceedings. 18(1):11.
Gong, H., Shao, Y., Brisco, B., Hu, Q., & Tian, W. 2013. Modeling the dielectric behavior of saline soil at microwave frequencies. Canadian Journal of Remote Sensing, 39(1), 17-26.
Helmut L., Tavakoli H., Ansair R., Askar H and Rastegari J. 2013. Crop and forage production using saline waters. daya publishing house, india.
Hoa, P. V., Giang, N. V., Binh, N. A., Hai, L. V. H., Pham, T. D., Hasanlou, M., & Tien Bui, D. (2019). Soil salinity mapping using SAR sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam). Remote Sensing, 11(2), 128.
He Y.-L., Geng Z.-Q., Zhu Q.-X. 2015. Data driven soft sensor development for complex chemical processes using extreme learning machine. Chemical Engineering Research and Design. 102, 1–11.
Hallikaïnen M.T., Ulaby F.T., Dobson F.T. et al. 1985. Microwave dielectric behavior of wet soil. Part I: Empirical models and experimental observations. IEEE Transactions on Geoscience and Remote Sensing, 23: 25−34.
Demattê, J. A., Campos, R. C., Alves, M. C., Fiorio, P. R., & Nanni, M. R. 2004. Visible–NIR reflectance: a new approach on soil evaluation. Geoderma, 121(1-2), 95-112.
Jackson T. J., Le Vine D. M., Swift C. T., Schmugge T. J. and Schiebe F. R. 1995. Large area mapping of soil moisture using the ESTAR passive microwave radiometer in Washita'92. Remote sensing of Environment, 54(1), 27-37.
Shirani H. 2000. Journal of Soil Physics, Valiasr University, Rafsanjan. (In Persian)
Kafi M. Borzoi, A.; Salehi, M.; Kamandi A., Masoumi A; Nabati, J. 2009, Physiology of environmental stresses in plants. Publications University of Mashhad.
Khan N.M., Rastoskuev V.V., Sato Y. and Shiozawa S. 2005. Assessment of hydrosaline land degradation by using a simple approach of remote sensingindicators. Agriculture Water Manager,77 (1–3): 96–109.
Lasne Y., Paillou P., Freeman A. and et al. 2008. Effect of salinity on the dielectric properties of geological materials: Implication for soil moisture detection by means of radar remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 46(6): 1674−1688.
Lee J. S., and Pottier E. 2009. Polarimetric radar imaging: from basics to applications. CRC press.
Materka A., and Strzelecki M. 1998. Texture analysis methods–a review. Technical university of lodz, institute of electronics, COST B11 report, Brussels, 9-11.
Modiri M. 1996, Principles and foundations of remote mining, Geographical Organization.
Nurmemet I., Ghulam A., Tiyip T., Elkadiri R., Ding J. L., Maimaitiyiming M., Sun Q. 2015. Monitoring soil salinization in Keriya River Basin, Northwestern China using passive reflective and active microwave remote sensing data. Remote Sensing, 7(7): 8803-8829.
Price J. C. 1980. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Resources Research, 16(4), 787-795.
Rhoades, J. D., Chanduvi, F., & Lesch, S. M. 1999. Soil salinity assessment: Methods and interpretation of electrical conductivity measurements (No. 57). Food & Agriculture Org.
Rodriguez-Fernandez N. J., Aires F., Richaume P., Kerr Y. H., Prigent C., Kolassa J. Drusch M. 2015. Soil moisture retrieval using neural networks: Application to SMOS. IEEE Transactions on Geoscience and Remote Sensing, 53(11), 5991-6007.
Sharifiya M.; Afzali A. A. 2012. Monitoring and analysis of soil salinity increasing trend in Damghan alluvial fan using satellite and survey data. Scientific-Research Ministry of Science,3(14): 73-86.
Sadeghi, A. M., Hancock, G. D., Waite, W. P., Scott, H. D., & Rand, J. A. 1984. Microwave measurements of moisture distributions in the upper soil profile. Water Resources Research, 20(7): 927-934.
Alizadeh A.2007. Soil Physics. Imam Reza University.
Saha, S. K. 2011. Microwave remote sensing in soil quality assessment. Int Arch Photogramm Remote Sens Spat Inf Sci, 38(8), W20.
SHAO Y., HU Q., GUO H. et al. 2003 Effect of dielectric properties of moist salinized soils on backscattering coefficients extracted from RADARSAT image. IEEE Transactions on Geoscience and Remote Sensing, 14(8): 1879–1888.
TOPP G.C., DAVIS J.L., ANNAN A.P., Electromagnetic determination of soil water content: Measurement in coaxial transmission lines, Water Resources Research, 16: 547−582, 1980.
Vijayarekha K. 2014. Feature Extraction. Thanjavur: School of Electrical and Electronics Engineering. SASTRA University.
Wold S., Martens H., Wold H. 1983. The Multivariate Calibration Problem in Chemistry Solved by the PLS Method. Matrix Pencils. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 286–293.
Wuthrich M. 1994. March. ERS-1 SAR compared to thermal infrared to estimate surface soil moisture. In Proceedings of the 21st Conference on Agricultural and Forest Meteorology, American Meteorological Society, San Diego. pp: 197-200.
Yan G. U. O., Zhou S. H. I., Zhou L. Q., Xi, J. I. N., Tian Y. F. and Teng H. F. 2013. Integrating remote sensing and proximal sensors for the detection of soil moisture and salinity variability in coastal areas. Journal of Integrative Agriculture, 12(4):723-731.
Wold S., Martens H., Wold H. 1983. The Multivariate Calibration Problem in Chemistry Solved by the PLS Method. Matrix Pencils. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 286–293.
Zhan Z., Qin Q., Ghulan A., Wang D. 2007. NIR-red spectral space based new method for soil moisture monitoring. Science in China Series D: Earth Sciences, 50(2), 283-289.
ZRIBI M., DECHAMBRE M., A new empirical model to retrieve soil moisture and roughness from radar data, Remote Sensing of Environment, 84: 42−52, 2003.