نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)،

2 گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان(خوراسگان)، اصفهان، ایران

3 استادیار بخش تحقیقات حفاظت خاک و آبخیزداری، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان

4 دانشیار گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

5 استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان، ایران

چکیده

کیفیت خاک تحت تأثیر کاربری اراضی و درجه شیب قرار می­گیرد و ارزیابی آن نقش مهمی در توسعه پایدار و مدیریت منابع خاک دارد. این پژوهش به منظور ارزیابی کیفیت خاک در کاربری­ها و شیب­های مختلف در حوزه آبخیز بابلرود در جنوب استان مازندران انجام شد. فاکتورهای مورد مطالعه شامل کاربری­ اراضی در پنج سطح (جنگل طبیعی، مرتع، شالیزار، باغ مرکبات و اراضی زراعی) و کلاس شیب در پنج سطح (0-2، 2-5، 5-8، 8-12 و شیب بالای 12درصد) می­باشند. 89 نقطه نمونه­برداری تعیین و نمونه­برداری از عمق صفر تا 20 سانتی­متری خاک انجام شد. هفده ویژگی خاک شامل قابلیت هدایت الکتریکی، اسیدیته، کربن آلی، نیتروژن کل، درصد شن، سیلت و رس، تخلخل، میانگین وزنی و هندسی قطر خاکدانه، درصد خاکدانه­های درشت و ریز، درصد آهک، رس قابل پراکنش در آب، کربن آلی ذره­ای، کربن آلی عجین­شده با بخش معدنی و ذخیره کربن آلی به­عنوان مجموعه کل ویژگی­ها (TDS) در نظر گرفته شدند. سپس با استفاده از روش تجزیه به مؤلفه­های اصلی (PCA) پنج ویژگی ذخیره کربن آلی، درصد خاکدانه­های درشت، قابلیت هدایت الکتریکی، درصد سیلت و رس به­عنوان حداقل ویژگی­های مؤثر (MDS) انتخاب شدند. در ادامه کیفیت خاک با استفاده از دو شاخص کیفیت تجمعی (SQIa) و کیفیت وزن­دار ((SQIw و هر کدام در دو مجموعه TDS و MDS به دو روش خطی و غیرخطی ارزیابی شدند. نتایج هشت شاخص­ کیفیت خاک نشان داد جنگل با درجه خوب و خیلی خوب دارای بهترین کیفیت و شالیزار دارای ضعیف­ترین کیفیت خاک است. در بین شاخص­های ارزیابی­شده، تنها شاخص SQIw-TDS-NL، کاهش کیفیت خاک با افزایش درجه شیب را نشان داد. وجود ضرائب تبیین 82/0 و 89/0 بین دو مجموعه MDS و TDS به­ترتیب در  SQIaو SQIw به روش غیرخطی، نشان­دهنده امکان استفاده از MDS بجای TDS در منطقه مطالعاتی است. همچنین با توجه به ضریب همبستگی 85/0 بین ذخیره کربن آلی و SQIw-MDS-NL، شاخص­SQIw-MDS-NL  برای ارزیابی کیفیت خاک منطقه پیشنهاد می­گردد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Quantitative assessment of soil quality in different land uses and slope gradients at Babolrood watershed, south of Mazandaran province

نویسندگان [English]

  • Fatemeh Aghalari 1
  • Elham Chavoshi 2
  • Sattar Chavoshi Borujeni 3
  • naser honarjoo 4
  • ahmad Jalalian 5

1 PhD student, Department of Soil Science, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

2 Department of Soil Science, Collage of Agriculture, Isfahan (khorasgan) Branch, Islamic Azad University, Isfahan, Iran

3 Soil Conservation and Watershed Assistant prof, Management Research Department, Isfahan Agricultural and Natural Resources Research and Education Centre, AREEO, Isfahan 8174835117, Iran

4 Department of Soil Science, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

5 professor, Department of Soil Science, College of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

چکیده [English]

Soil quality is affected by land use and slope gradient, and soil quality assessment is important in determining sustainable land-use and soil-management practices. This study was conducted to assess soil quality in different land uses and slope gradients at Babolrood watershed, south of Mazandaran province. The studied factors included five levels of land uses (natural forest, rangeland, paddy field, citrus orchard and farmlands) and five levels of slope classes (0-2%, 2-5%, 5-8%, 8-12% and above 12 %). A total of 89 soil samples were collected in the upper layer of topsoil (depth 0-20 cm). The seventeen soil properties were used in a total data set (TDS). These properties included pH, EC, organic carbon (OC), clay, silt, sand, water dispersible clay (WDC), soil bulk density (BD), soil porosity (Pr), mean weight diameter (MWD), geometric mean diameter (GMD), macro aggregates, micro aggregates, total neutralizing value (TNV), organic carbon pool (OCpool), particulate organic carbon (POC), and mineral-associated organic carbon (MOC). Using the principal components analysis (PCA) method, five soil properties (OCpool, macro aggregates, EC, silt and clay) were selected for the minimum data set (MDS). The soil quality was evaluated by additive soil quality index (SQIa) and weighted additive soil quality index (SQIw) in two data sets of soil properties including MDS and TDS. The eight soil quality indices showed that the forest has the best soil quality with a good and very good grade and the paddy field has the poorest soil quality. Also, among the evaluated SQIs, only SQIw-TDS-NL showed a decrease in soil quality with increasing slope gradients. Moreover, the correlation coefficients were 82% and 89% between the two sets of MDS and TDS in SQIa and SQIw using nonlinear scoring methods, respectively. Because of the good correlation between TDS and MDS, the MDS set is better to determine soil quality indices in the study area. The correlation coefficient between SQIw-MDS-NLwith OCpool was higher (0.85) than all SQIs. So, SQIw-MDS-NL is suggested to evaluate soil quality in the study area.

کلیدواژه‌ها [English]

  • weighted additive soil quality
  • additive soil quality
  • minimum data set
  • principal components analysis
Alidoust E., Afyuni M., Hajabbasi M.A., and Mosaddeghi M.R. 2018. Application of multivariate statistical methods for evaluating soil quality indices in Lordegan semiarid region. Applied Soil Research, 7(3): 192-206. (In Persian)
Andrews S.S., Karlen D.L., and Cambardella C.A. 2004. The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of American Journal, 68: 1945–1962.
Andrews S.S., Karlen D.L., and Mitchell J.P. 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, ecosystems & environment, 90 (1): 25-45.
Anteneh Wubie M., and Assen M. 2020. Effects of land cover changes and slope gradient on soil quality in the Gumara watershed, lake Tana basin of north–west Ethiopia. Modeling Earth Systems and Environment, 6: 85–97.
Askari M.S., and Holden N.M. 2015. Quantitative soil quality indexing of temperate arable management systems. Soil and Tillage Research, 150: 57-67.
Bahmani M., Mohammadi J., Esfandiarpour Boroujeni I., and Motaghian H.R. 2019. Assessing and mapping of Integrated and nemero soil quality indices and their relationship with rose yield (a case study: Bardsir, Kerman province). Journal of Soil Management and Sustainable Production, 9(3): 1-23. (In Persian)
Baker B.J., Fausey N.R., and Islam K.R. 2004. Comparison of soil physical properties under two different water table management regimes. Soil Science Society of American Journal, 68: 1973–1981.
Bastida F., Moreno J.L., Hernandez T., and García C. 2006. Microbiological degradation index of soils in a semiarid climate. Soil Biology and Biochemistry, 38: 3463–3473.
Blake G.R., Hartge K.H. 1986. Bulk density. In: Klute, A. (Ed.), Methods of Soil Analysis- Part 1. Physical Methods—SSSA Book Series No. 9. Soil Science Society of America and American Society of Agronomy, Madison, pp. 363–375.
Bremner J.M., Mulvaney C.S. 1982. Total nitrogen. In: Page A.L. (Ed.), Methods of Soil Analysis - Part 2. Chemical and Microbiological Properties—SSSA Book Series No. 9. Soil Science Society of America and American Society of Agronomy, Madison, pp. 595-624.
Cambardella C.A., Elliott E.T. 1993. Methods for physical separation and characterization of soil organic matter fractions. In: Brussaard L., Kooistra M.J. (Eds.), Soil Structure/Soil Biota Interrelationships. Elsevier, Wageningen, Netherlands, pp. 449–457.
Cambardella C.A., Gajda A.M., Doran J.W., Wienhold B.J., Kettler T.A. 2001. Estimation of particulate and total organic matter by weight loss-on ignition., In: Lal R., Kimble J.M., Follett R.F., Stewart B.A. (Eds.), Assessment Methods for Soil Carbon. CRC, Boca Raton, FL, pp: 349-359.
Compos C.A., Oleschko L.K., Elchevers B.J., and Hidalgo M.C. 2007. Exploring the effect of change in land use on soil quality on the eastern slope of the Cofre de Perote Volcano (Mexico). Forest Ecology and Management, 248: 174–182.
Doran J.W., and Jones A.J. 1996. Methods for Assessing Soil Quality. 2nd Ed. Soil Science Society of America Special Publication, Madison, WI, 401p.
Doran J.W., and Parkin T.B. 1994. Defining and assessing soil quality. In: Doran J.W., Coleman D.C.,  Bezdicek D.F., Stewart B.A. (Eds.). Defining Soil Quality for a Sustainable Environment. American Society of Agronomy, Inc. Soil Science Society of America, Special Publication, Madison, WI, pp. 1-21.
Gee W., Bauder J.W. 1986. Particle size analysis. In: Klute A. (Ed.), Methods of Soil Analysis- Part 1. Physical Methods—SSSA Book Series No. 9. Soil Science Society of America and American Society of Agronomy, Madison, pp. 383-411.
Ghaemi M., Astaraei A.R., Sanaei Nezhad S.H., Nasiri Mahalati M., and Emami H. 2013. Evaluating chemical quality of several soil cultivation wheat-corn using of soil quality models at some parts of south east Mashhad area. Soil Research, 27(4): 463-473. (In Persian)
Griffiths B.S., Ball B.C., Daniell T.J., Hallett P.D., Neilson R., Wheatley R.E., and Bohanec M. 2010. Integrating soil quality changes to arable agricultural systems following organic matter addition, or adoption of a ley-arable rotation. Applied Soil Ecology, 46(1): 43–53.
Guo L.B., and Gifford R.M. 2002. Soil carbon stocks and land use change. Global Change Biology, 8: 345–360.
Guo L., Sun Z., Ouyang Z., Han D., and Li F. 2017. A comparison of soil quality evaluation methods for fluvisol along the lower yellow river. Catena, 152: 135-143.
Govaerts B., Sayre K.D., and Deckers J. 2006. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil and tillage research, 87(2): 163-174.
Hemati fard A., Nadri M., Karimi A., and Mohmmadi J. 2018. Assessment quantitative of soil quality in different uses of shahrekord plain using the analytical hierarchical process (AHP). Journal of Water and Soil Science, 23(1): 293- 307.
Hemmati S., Yaghmaeian Mahabadi N., Farhangi M.B. and Sabouri A. 2019. Assessing soil quality indices and their relationships with rice yield in paddy fields of central Guilan province.  Journal of Soil Management and Sustainable Production, 9(1): 1-24.
Husien H., Mohamed A., Melanie D. 2015. Impacts of land use and land cover changes and topographic aspects on soil quality in the Kasso catchment, bale mountains of the south eastern Ethiopia. Singapore Journal of Tropical Geography, 36: 357– 375.
Hussain I., Olson K.R., Wander M.M., and Karlen D.L. 1999. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Tillage Research, 50: 237–249.

Kakeh J., Gorji M., and Alimohammadi A. 2017. Quantitative soil quality assessment in different land uses at some parts of south eastern of Qazvin. Iranian Journal of Soil and Water Research, 47(4): 775-784. (In Persian)

Karami O., Nasr M.H., Jalilvand H., and Miryaghubzadeh M. 2015. Determination of Babolrood basin capability for various land uses using multi criteria decision making methods. Journal of Watershed Management Research, 6 (11): 171- 181. (In Persian)
Karlen D.L., Scott D.E., 1994. A framework for evaluating physical and chemical indicators of soil
quality. In: Doran J.W., Coleman D.C., Bezdicek D.F., Stewart B.A. (Eds.), Defining Soil Quality
for a Sustainable Environment. American Society of Agronomy, Inc. Soil Science Society of
America, Madison, WI, USA, pp. 53–72.
Khormali F., Ajami M., Ayoubi S., Srinivasarao C., and Wani S.P. 2009. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agriculture, Ecosystems and Environment, 134: 178–189.
Liebig M.A., Varvel G., and Doran J. 2001. A simple performance‐based index for assessing multiple agroecosystem functions. Agronomy Journal, 93: 313–318.
Masto R., Chhonkar P., Singh D., and Patra A. 2008. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilization and manuring for 31 years in the semi- arid soils of India. Environmental Monitoring and Assessment, 136(1–3): 419–435.
Marquez C.O., Garcia V.J., Cambardella C.A., Schultz R.C. and Isenhart T.M. 2004. Aggregate-size stability distribution and soil stability. Soil Science Society of America Journal, 68: 725-735.
Marzaioli R., D’Ascoli R., De Pascale R.A., and Rutigliano F.A. 2010. Soil quality in a mediterranean area of southern Italy as related to different land use types. Applied Soil Ecology, 44: 205–212.
Mendham D.S., Heagney E.C., and Corbeels M. 2004. Soil particulate organic matter effects on nitrogen availability after afforestation with Eucalyptus globulus. Soil Biology and Biochemistry, 36: 1067-1074.
Mirkhani R., Vaezi A.R., and Rezaei H. 2020. Spatial distribution of soil quality in Savojbolagh fields in Alborz province. Applied Soil Research, 9(2): 1-19. (In Persian)
Mukherjee A., and Lal R. 2014. Comparison of soil quality index using three methods. Plos One, 9 (8): 59-81.
Nabiollahi K., Golmohamadi F., Taghizadeh-Mehrjardi R., Kerry R., and Davari M. 2018. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma, 318: 16-28.
Qi Y., Darilek J.L., Huang B., Zhao Y., Sun W., and Gu Z. 2009. Evaluating soil quality indices in an agricultural region of Jiangsu Province, China. Geoderma, 149(3-4): 325-334.
Rengasamy P., Greene R.S.B., Ford G.W., and Mehanni A.H. 1984. Identification of dispersive behaviour and the management of red-brown earths. Australian Journal of Soil Research, 22: 413-431.
Rodrıguez-Loinaz G., Onaindia M., Amezaga I., Mijangos I., and Garbisu C. 2008. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biology & Biochemistry, 40: 49–60.
Safaei M., Bashari H., Mosaddeghi M.R., and Jafari R. 2019. Assessing the impacts of land use and land cover changes on soil functions using landscape function analysis and soil quality indicators in semi-arid natural ecosystems. Catena, 177: 260–271.
Shahab H., Emami H., Hagh Nia G.H., and Karimi A. 2011. Determining most important properties for soil quality indices of agriculture and rangelands in some parts of southern Mashhad. Journal of Water and Soil, 25(5): 1197-1205. (In Persian)
Soofi M.B., Emami H., Karimi Karoyeh A.R., and Hagh Nia G.H. 2016. Investigation the effects of aspect and degree of slope on soil quality in the south east of Mashhad. Journal of Water and Soil Conservation, 23(2): 301- 310. (In Persian)
Vahedi A.A., Mataji A., and Hojati M. 2014. Modelling of soil organic carbon in relation to soil physico-chemical properties in Glendrood forest in northern Iran. Journal of soil research (soil and water sciences), 28(1): 53-62. (In persion)
Varasteh Khanlari Z., Golchin A., and Musavi Kupar S.A. 2020. Effect of land use change and land reclamation on some qualitative characteristics and activity of some enzymes in the soil. Iranian Journal of Soil and Water Research, 51(4):1055-1068. (In Persian)
Vasu D., Singh S.K., Ray S.K., Duraisami V.P., Tiwary P., Chandran P., Nimkar A.M., and Anantwar S.G. 2016. Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282: 70–79.
Walkley A., and Black I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63: 251-263.
Yaghmaeian Mahabadi N., Fayyaz H., Sabouri A., and Shirinfekr A. 2021. Comparison of soil quality evaluation methods and their relationships with tea yield in west Guilan province. Journal of Soil Research, 34(4): 435-451.
Yuan J.Z., and Mingan S. 2008. Spatial distribution of surface rock fragment on hill slopes in a small catchment in wind-water erosion crisscross region of the loess Plateau. Science in China Series D: Earth Sciences, 51: 862-870.
Zeraatpisheh M., Bakhshandeh E., Hosseini M., and Alavi S.M. 2020. Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma, 363: 114-139.