تاثیر آتش سوزی بر میزان کربن آلی خاک و قابلیت دسترسی عناصر غذایی در جنگل های بلوط سردشت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم خاک دانشکده کشاورزی دانشگاه ارومیه

2 دانشیار گروه علوم خاک، دانشکده کشاورزی دانشگاه ارومیه (مکاتبه کننده)

چکیده

بسیاری از خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک در اثر آتش­سوزی تغییر می­کنند. آتش با تغییر در میزان و قابلیت دسترسی عناصر غذایی خاک قادر است حاصلخیزی خاک­های جنگلی را در طول زمان تحت تاثیر قرار دهد. به­ منظور بررسی تاثیر آتش­سوزی و زمان­های پس از آن بر برخی خواص شیمیایی خاک، تعداد 80 نمونه خاک (سوخته و غیرسوخته) از دو عمق سطحی (5 -0 سانتی­متری) و زیرسطحی (20 - 5 سانتی­متری) با سابقه آتش­سوزی متفاوت شامل 6 و 12 ماه پس از آتش­سوزی برداشت و مقادیر نیتروژن کل، فسفر، پتاسیم، منگنز، آهن، روی، مس و کربن آلی خاک در نمونه­های تهیه شده اندازه­گیری شد. نتایج نشان­دهنده وجود اختلاف معنی­دار از نظر میزان فسفر و نیتروژن بین خاک­های سوخته و شاهد (غیر سوخته) بود. به­طوری­که مقدار این پارامترها 6 ماه پس از آتش­سوزی در خاک­های سوخته در مقایسه با خاک­های شاهد افزایش نشان داد ولی پس از گذشت 12 ماه به سطوح قبل از آتش­سوزی رسید. میزان فسفر و کربن بخش درشت (2 – 25/0 میلی­متر) در خاک­های سوخته به­ترتیب 23/2 و 53/2 برابر بیشتر از مقادیر این عناصر در خاک­های شاهد بود. مقدار منگنز نیز در خاک­هایی با 6 ماه سابقه آتش­سوزی به­میزان 7/32 درصد نسبت به خاک­های شاهد افزایش نشان داد در حالی­که با گذشت یک­سال از زمان وقوع آتش­سوزی، مقدار آن در خاک سوخته در مقایسه با خاک شاهد 4/21 درصد کاهش داشت. بیشترین مقدار پتاسیم نیز 392 میلی­گرم بر کیلوگرم بود که در خاک­های سوخته با 12 ماه سابقه سوختگی مشاهده شد. به­طورکلی آتش‌سوزی منجر به تغییرات محسوسی در خواص خاک می­شود اما این تغییرات پایدار نبوده و بسته به­شدت آتش­سوزی طول بقای اثرات متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

The effects of fire on soil organic carbon quantity and nutrients availability in Sardasht Oak forests

نویسندگان [English]

  • Sanaz Ashrafi-Saeidlou 1
  • MirHassan Rasouli-Sadaghiani 2
1 MSc Student, Department of Soil Science, Urmia University, Iran
2 Associate Professor, Department of Soil Science, Urmia University
چکیده [English]

Most of soil physical, chemical and biological properties change by fire. Fire can influence forest soils fertility by altering nutrients content and availability. In order to investigate fire impact and different firing background on some soil chemical properties, 80 soil samples were taken from two depths (0-5 cm and 5-20 cm) with different time of firing background (6 and 12 months). Total nitrogen, phosphorus, potassium, manganese, iron, zinc, copper and organic carbon were measured in soil samples. The results showed that there was a significant difference in the amount of phosphorus and nitrogen between burned and control soils. The amount of studied indices increased after firing in burned soils compared to control ones, however one year later they reach to their pre-fire levels. Phosphorus and coarse fraction carbon (0.25-2 mm) in burned soils were 2.23 and 2.53 times higher as compared to unfired samples, respectively. Manganeseamount in soils with 6 months firing history increased 32.7 percent in comparison to control soils, but one year after firing its content decreased. The most potassium amount (392 mg kg-1) observed in burned soils with 12 months history of burn. Therefore forest firing causes obvious changes in soil properties but these changes are not permanent and depending on fire intensity, impression permanency duration is different.

References

Adams PW and Boyle JR. 1980. Effects of fire on soil nutrients in clear-cut and whole-tree harvest sites in Central Michigan. Soil Science Society of America Journal, 44: 847–850.

Bell RL and Binkley D. 1989. Soil nitrogen mineralization and immobilization in response to periodic prescribed fire in a loblolly pine plantation. Canadian Journal of Forest Research, 19: 816–820.

Bremner JM and Mulvaney CS. 1982. Nitrogen- total. Methods of Soil Analysis, 595-624p.

Busse MD and DeBano LF. In Wildland fire in ecosystems: Effects of fire on soil and water. General Technical Report RMRSGTR, No. 42.

Cade-Menun BJ, Berch SM, Preston CM and Lavkulich LM. 2000. Phosphorus forms and related soil chemistry of Podzolic soils on Northern Vancouver island. II. The effects of clear-cutting and burning. Canadian Journal of Forest Research, 30: 1726–1741.

Carreira JA and Niell FX. 1995. Mobilization of nutrients by fire in a semiarid gorse–shrubland ecosystem of Southern Spain. Arid Soil Research and Rehabilitation, l9:73–89.

Certini G. 2000. Effects of fire on properties of forest soils: A review. Oecologia, 143: 1–10.

Chapman HD and Pratt PF. 1978. Methods of analysis for soils, plants and waters. Division of Agricultural Sciences, University of California, Berkeley, USA, 3043p.

Covington WW and Sackett SS. 1992.Soil mineral nitrogen changes following prescribed burning in ponderosa pine. Forest Ecology and Management, 54: 175–191.

DeBano LF, Savage SM and Hamilton DA. 1976. The transfer of heat and hydrophobic substances during burning. Soil Science Society of America Journal, 40(5): 779-786.

DeBano LF, Neary DG and Folliott DF. 1998. Fire’s effects on ecosystems. John Wiley and Sons, Inc. New York, USA, 612 p.

DeBano LF. 2000. The role of fire and soil heating on water repellence in wild land environments: A review. Journal of Hydrology, 231: 195– 206.

Doerr SH, Shakesby RA and Walsh RPD. 2000.Soil water repellency: Its causes, characteristics and hydrogeo-morphological significance. Earth Science Reviews, 51: 33–65.

Gonzalez Parra J, Cala Rivero V and Iglesias Lopez T. 1996. Forms of manganese in soils affected by a forest fire. Science of Total Environment, 181:231–236.

Granged AJP, Jordán A, Zavala LM, Muñoz-Rojas M and Mataix-Solera J. 2011. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 167–168: 125–134.

Hamman ST, Burke IC and Knapp EE. 2008. Soil nutrients and microbial activity after early and late season prescribed burns in a Sierra Nevada mixed conifer forest. Forest Ecology and Management, 256: 367–374.

Hatten J, Zabowski D, Scherer G and Dolan E. 2005. A comparison of soil properties after contemporary wildfire and fire suppression. Forest Ecology and Management, 220: 227-241.

Huffman EL, MacDonald LH and Stednick JD. 2001. Strength and persistence of fire-induced soil      hydrophobicity under ponderosa and lodge pole pine, Colorado Front Range. Hydrological Processes, 15: 2877–2892.

Johnson DL and Curtis PS. 2001.Effects of forest management on soil C and N storage: Meta analysis. Forest Ecology and Management, 140: 227–238.

Johnson D, Murphy JD, Walker RF, Glass DW and Miller WW. 2007. Wildfire effects on forest carbon and nutrient budgets. Ecological Engineering, 31: 183–192.

Jones JB. 2003. Agronomic handbook: Management of crops, soils and their fertility. Boca Raton, CRC Press, 450 p.

Khanna PK, Raison RJ and Falkiner RA. 1994. Chemical properties of ash derived from eucalyptus litter and its effects on forest soils. Forest Ecology and Management, 66: 107–125.

Kovacic DA, Swift DM, Ellis JE and hakonson TE. 1986. Immediate effects of prescribed burning on mineral soil nitrogen in ponderosa pine of New Mexico. Soil Science, 141: 71–75.

Kutiel P and Shaviv A. 1992. Effects of soil type, plant composition and leaching on soil nutrients following a simulated forest fire. Forest Ecology and Management, 53: 329–343.

Lindsay WL and Norvell WA. 1978. Development of DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421–8.

Neary DG, Ryan KC andDeBano LF. 2005. Fire effects on soil and water. USDAForest Service, Rocky Mountain Research Station: Ogden, UT, USA, 73–91p.

Nelson DW and Sommers LE. 1982. Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR. (eds). Methods of Soil Analysis, Part 2. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, 539–579 p.

Olsen SR and Sommers LE. 1982. Phosphorus. In: Page AL, Miller RH, Keeney DR. (eds). Methods of Soil Analysis, Part 2. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, 403-430p.

Raison RJ, Khanna PK and Woods PV. 1985. Transfer of elements to the atmosphere during low-intensity prescribed fires in three Australian subalpine eucalypt forests. Canadian Journal of Forest Research, 657-664p.

Raison RJ, Khanna PK and Woods PV.1985. Mechanisms of element transfer to the atmosphere during vegetation fires. Canadian Journal of Forest Research, 15: 132–140.

Rashid GH. 1987. Effect of fire on soil carbon and nitrogen in a Mediterranean oak forest of Algeria. Plant and Soil, 103: 89-93.

Scharenbroch BC, Nix B, Jacobs KA and Bowles ML. 2012.Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geothermal, 183–184: 80–91.

Serrasolsas I and Khanna PK. 1995. Changes in heated and autoclaved forest soils of SE Australia. II. Phosphorus and phosphatase activity. Biogeochemistry, 29: 25–41.

Sharpley A. 2000. Phosphorous availability. Sumner ME (eds). Handbook of Soil Science. CRC Boca Raton, 18–38.

Simard DG, Fyles JW, Pare D and Nguyen T. 2001. Impacts of clear cut harvesting and wildfire on soil nutrient status in the Quebec boreal forest. Canadian Journal of Soil Science, 81:229–237.

Wells CR. 1979. Effects of prescribed burning on soil chemical properties and nutrient availability. Ashville, New York, 86-99p.

Zhang WR, Yang GY, Tu XY and Zhang P. 1999. Determination of forest soil water-physical properties. China Criterionof Forest Technique, No. LY/T 1215 (In Chinese).