ارزیابی کارایی شاخص‌های اصلاح شده اراضی در تعیین پتانسیل تولید ذرت دانه‌ای به روش فائو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار مرکز آموزش عالی شهید باکری میاندوآب، دانشگاه ارومیه (مکاتبه کننده)

2 استادیار گروه علوم و مهندسی خاک دانشگاه ارومیه

3 دانشجوی دکتری گروه علوم و مهندسی خاک دانشگاه شهید چمران اهواز

4 فارغ‌التحصیل کارشناسی ارشد علوم و مهندسی خاک دانشگاه شاهد تهران

چکیده

برای شناخت محدودیت­های محیطی تولید و برنامه­ریزی صحیح کشت، ارزیابی تناسب اراضی و تخمین پتانسیل امری ضروری است. یکی از پرکاربردترین روش­ها در ارزیابی تناسب اراضی و محاسبه پتانسیل تولید روش فائو است. این تحقیق
به­منظور مقایسه شاخص­های اصلاح نشده و اصلاح شده اراضی برای تعیین پتانسیل تولید ذرت دانه­ای انجام گردید. جهت نیل به­ اهداف، داده­های مزرعه­ای و آزمایشگاهی از 16 واحد اراضی اخذ گردید، سپس بر اساس مدل AEZ ابتدا تولید پتانسیل یا پتانسیل حرارتی- تابشی تولید برآورد و سپس شاخص خاک به روش­های استوری و ریشه دوم که موید اثر مشخصات محدود کننده آن در کاهش تولید می­باشد، محاسبه گردید. نهایتا پتانسیل تولید اراضی به روش فائو از ضرب شاخص­های خاک در تولید پتانسیل حاصل گردید. نتایج نشان داد که در روش­های پارامتریک (فرمول استوری و ریشه دوم)  شاخص­های اصلاح­­نشده اراضی  نسبتا پایین­تر از حد قابل انتظار بود. برای رفع این مشکل شاخص­های اراضی اصلاح گردید که نتایج باعث بهبود
کلاس­های تناسب اراضی گردید. ضرایب تشخیص روابط رگرسیونی بین پتانسیل تولید اراضی و عملکرد مشاهده شده، به­ترتیب 79/0، 84/0، 86/0 و 9/0 برای مدل­های استوری اصلاح نشده، ریشه دوم اصلاح نشده، استوری اصلاح شده و ریشه دوم اصلاح شده می­باشد. با توجه به نتایج فوق می­توان نتیجه­گیری کرد که مدل ارائه شده به روش ریشه­دوم اصلاح شده  با توجه به ضریب تشخیص بالاتر و خطای پایین­تر نسبت به سایر روش­ها، عملکرد مشاهده شده را بهتر پیش­بینی می­کند.

کلیدواژه‌ها


عنوان مقاله [English]

Performance evaluation of corrected land indices to determine the Potential of Maize production using FAO Method

نویسندگان [English]

  • Moslem Servati 1
  • Hamidreza Momtaz 2
  • Behnam Zali Vargahan 3
  • Hassan Mohammadi 4
1 Assistant Professor, Shahid Bakeri High Education Center of Miandoab, Urmia University
2 - Assistant Professor, Department of Soil Science, Urmia University

Maize is one the major utilization type in Gobadloo region where placed in East Azarbaijan porivince, North-West of Iran, so performance of land suitability evaluation and land production potential prediction are very important for knowing environmental limitations and planning proper cultivation. FAO guidelines on the land evaluation system were widely used for the land suitability, so soil morphological and analytical data were carried out for 16 land units. Then, based on AEZ model, radiation thermal production potential for Maize was estimated and then soil indices which indicate the extent of soil limitations effectiveness on production reduction, was calculated by the square root formulas. Finally land production potential was calculated by multiplication of the soil indices and radiation thermal production potential. The results reaveald that parametric methods (square root and storie formulas) uncorrected land indices had lower values than which what it was expected in real conditions. For solving this problem land indices were corrected and the results improved land suitability classes. Coefficient of correlation values between land production potential and observed yield were 0.79, 0.84, 0.86 and 0.9 for uncorrected storie, uncorrected root mean square, corrected storie and root mean square models respectively. Based on the results, can conclude that Mean Absolute Error is able to predict yield better than that other methods because of higher regression coefficient and lower error.

References                                                     

 

Ashraf, S., Ashraf, V., & Abbaspour, H. (2011). Assessment of land production potential for barley using geographic information system (GIS) method. Indian Journal of Science and Technology, 4(12), 1775-1777.

Ayoubi, SH., & Jalalian, A. (2010). Land Evaluation (Agricultural and Natural Resources Second Edition), Isfahan University of Technology Publication Center, Isfahan, Iran.

Chinene, V. R. N. (1991). The Zambian land evaluation system (ZLES). Soil use and management, 7(1), 21-29.

de Wit, C. T. (1965). Photosynthesis of leaf canopies (No. 663, p. 57). Pudoc.

Etedali, S., Givi, J., & Nouri, M. (2012). TEDALI, S., GIVI, J., & NOURI, M. (2012). Comparision between land production potential prediction for Maize using FAO and Wageningen models and assessment of management level for it’s cultivation around Shahrekord city. Journal of Water and Soil (Agricultural Science and Technology), 26(4), 873-885(in Persian)

FAO. 1983. Guidelines: Land Evaluation for Rainfed Agriculture. Vol. 52-54, Food and Agriculture Organization of the United Nations, Rome, International Standard Book Number, 13: 9789251014554, 237P.

FAO. 1991. Agro-EcologicalLand Resources Assessment for Agricultural Development Lanning: A Case Study of Kenya Resources Database and Land Productivity. Food and Agriculture Organization, Rome, Italy.

FAO. 1996. Agro-ecological Zoning Guidelines. FAO soils Bulletin No. 76. FAO, Rome,Italy.

Geological survey and Mineral Exploration of Iran. 2006.  Geology Map of Iran, 1:100000 series, Shite N, Khoja.

Jafarzadeh, A. A., Alamdari, P., Neyshabouri, M. R., & Saedi, S. (2008). Land suitability evaluation of Bilverdy Research Station for wheat, barley, alfalfa, maize and safflower. Soil and Water Research, 3(Special Issue 1), S81-S88.

Jiang, P., & Thelen, K. D. (2004). Effect of soil and topographic properties on crop yield in a north-central corn–soybean cropping system. Agronomy Journal, 96(1), 252-258.

Khiddir, S. M. (1986). A statistical approach in the use of parametric systems applied to the FAO framework for land evaluation (Doctoral dissertation, Ph. D. Thesis. State University Ghent).

Rahimi lake, H., Taghizadeh Mehrijardi, R., Akbarzadeh, A., & Ramazanpour, H. (2009). Qualitative and Quantitative land suitability Evaluation for olive production Roodbar Region, Iran, Agricaltural journal 4(2): 52-62.

Rosa, D. D. L., Moreno, J. A., García, L. V., & Almorza, J. (1992). MicroLEIS: a microcomputer‐based Mediterranean land evaluation information system. Soil Use and Management, 8(2), 89-96.

Servati, M., Jafarzadeh, AA., Ghorbani, MA., Shahbazi, F., & Davatgar, N. (2014). Comparison of the FAO and Albero Models in Prediction of Irigated Wheat Production Potentials in the Khajeh region.Water and Soil Science Journal, 24: 1-14. (in Persian with English Summery).

Servati, M. (2013). Comparasion Parametric, Microleis, Fuzzy Set Theory and Analytical Hierarchy Process for land suitability evaluation of some crops in Khajeh region. PhD Thesis of Soil science and engeenering, University of Tabriz, (in Persian with English Summery).

Soil Survey Staff. (1994). Keys to soil taxonomy. Soil Conservation Service.

Storie, R. E. (1950). Rating soils for agricultural, forest and grazing use. Transactions 4th Int. Cong. Soil Sci., 1, 336-339.

Sys, C., Van Ranset, E., & Debaveye, J. (1991a). Land Evaluation, Part I, Principle in Land Evaluation and Crop Production Calculation, InternationalTrainingCenter for Post Graduate Soil Scientists, Ghent Univercity, Ghent, Belgium.

Sys, C., Van Ranst, E., & Debaveye, J. (1991b). Land Evaluation, Part II, Methods in Land Evaluation. International Training Center for Post Graduate Soil Scientists, Ghent Univercity, Ghent, Belgium.

Sys, C., Van Ranst, E., Debaveye, J., & Beernaert, F. (1993). Land Evaluation, Part III, Crop Requirements. General Administration for Development Cooperation Place, Brussels, Belgium.

Yasmina, A., Moulay, A., Najmia, A. M., Enrico, B., Yasmina, B., Paolo Omar, C., & Aldo, D. (2000). Land evaluation in the province of Ben Slimane, Morocco. Proc. of 21st Course Professional Master Remote Sensing and Natural Resource Evaluation, 21, 62-78.