تأثیر تخلخل تهویه‌ای و مصرف اوره و منو کلسیم فسفات بر قابلیت‌دسترسی نیتروژن، فسفر و پتاسیم در طول زمان انکوباسیون

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه علوم خاک، دانشکده کشاورزی دانشگاه ارومیه

2 استاد گروه علوم خاک، دانشکده کشاورزی دانشگاه ارومیه

3 استادیارگروه علوم خاک، دانشکده کشاورزی دانشگاه ارومیه

چکیده

تخلخل تهویه­ای (AFP) به­عنوان یکی از ویژگی­های مهم فیزیکی خاک می­تواند قابلیت­استفاده، جذب آب، اکسیژن و عناصر غذایی را تحت تأثیر قرار دهد. تخلخل تهویه­ای کم ناشی از زیادی آب در خاک، می­تواند با محدود کردن دسترسی گیاه به اکسیژن و عناصر غذایی خاک اثرات منفی شدیدی بر تولید محصولات کشاورزی ایجاد کند. به­منظور بررسی بر هم­کنش سطوح مختلف تخلخل تهویه­ای و ترکیبات کودی نیتروژن و فسفر بر قابلیت­دسترسی نیتروژن، فسفر و پتاسیم، آزمایشی گلخانه­ای به­صورت فاکتوریل در قالب طرح پایه کاملا تصادفی با دو فاکتور، شامل درصد تخلخل تهویه­ای (0، 4, 8، 12، 16،20 و 24 درصد) و دو سطح کودی (شاهد و سطح بهینه) از منبع کودی اوره و منوکلسیم فسفات با سه تکرار طراحی و اجرا شد. نتایج نشان داد که قابلیت­دسترسی عناصر غذایی به­طور معنی­داری (001/0P)،تحت تأثیر مقدار رطوبت و سطح اکسیژن در خاک بوده است. بیشترین غلظت فسفر قابل­جذب در سطح صفر درصد از تخلخل تهویه­ای و کمترین مقدار آن در سطح 24 درصد تخلخل تهویه­ای مشاهده شد. غلظت یون نیترات در سطوح 12 تا 20 درصد از تخلخل تهویه­ای افزایش معنی­داری در سطح 1/0 درصد داشت. پتاسیم با وجود افزایش در سطوح تخلخل تهویه­ای 12 تا 20 درصد اختلاف قابل­ملاحظه­ای به­لحاظ مقایسه میانگین با سطوح صفر، 4، 8 و 24 درصد نداشت.انکوباسیون خاک در سطوح مختلف تخلخل تهویه­ای ناشی از رطوبت، طی زمان سبب شد غلظت عناصر پرمصرف (N,P,K) با گذشت زمان کاهش یابد.نتایج کلی این آزمایش نشان داد سطوح 12 تا 20 درصد، محدوده مناسبی از تخلخل تهویه­ای برای
قابلیت­دسترسی عناصر غذایی پرمصرف (
N,P,K) است و همچنین مصرف توأم نیتروژن و فسفر از طریق بهبود حاصلخیزی خاک می­تواند تا اندازه­ای اثرات منفی ناشی از زیادی آب در خاک و کمبود اکسیژن را تا حدی جبران نماید.

کلیدواژه‌ها


عنوان مقاله [English]

The study of interaction air filled porosity and the use of urea and mono calcium phosphate on the availability of nitrogen, phosphorus and potassium in incubation period

نویسندگان [English]

  • Nooshin Soltanalinezhad 1
  • Abbas Samadi 2
  • Hossein Asgarzadeh 3
  • Behnam Dovlati 3
چکیده [English]

Air filled porosity as one of the most important properties of the soil, can influence the availability of water, oxygen, and other nutrient elements. In order to investigate the interactions between air filled porosity levels and urea and phosphorus fertilizers it was done on availability of macro elements (N-NO3, P, K). A factorial experiment was carried out based on the randomized completely design with two factors including air filled porosity at seven levels (0, 4, 8, 12, 16, 20, 24%), and fertilizer at two levels (control and optimum level) from mono calcium phosphates and urea sources in the incubation period in three times (40, 80, 120 days) at three replications. Some of the chemical characteristics of treated soils such as pH, concentration of bicarbonate (HCO-3) and nitrate ions, and available phosphorus and potassium at different levels of air filled porosity were measured. Results showed that the correlation between pH, nitrate, bicarbonate, phosphorus and potassium with air filled porosity changes was significant. Increasing the incubation time was caused to reduce the amount of availability nitrate, phosphorus and potassium soil. Also with decreasing air filled porosity levels pH, HCO-concentration and availability of phosphorus were increased. The concentration of nitrate ions under the influence of temperature, pH, moisture and oxygen in different of the air porosity levels (12, 16 and 20%) showed a significant increase. So the air filled porosity of 12, 16 and 20 percent were determined the optimal range for the concentration of nitrate, phosphorus and potassium available

کلیدواژه‌ها [English]

  • Air filled porosity
  • Soil moisture
  • Availability of nitrogen
  • Phosphorus and Potassium content
Alfaro, M. A., Jarvis, S. C., and Gregory, P. J. (2004). Factors affecting potassium leaching in different soils. Soil Use and Management, 20(2), 182-189.

Amrhein, C., Zahow, M. F., and Suarez, D. L. (1993). Calcite super saturation in soil suspensions. Soil Science, 156(3), 163-170.

Andrist Rangel, Y. (2008). Quantifying mineral sources of potassium in agricultural soils. Acta Universities Agriculture Sueciae, 53:1652-6880.

Baver, L. D., and Farnsworth, R. B. (1940).Soil structure effects in the growth of sugar beets. Soil Science Society American of Journal, 5: 45-48.

Bhagat, R. M., Bhuiyan, S. I., and Moody, K. (1996). Water, tillage and weed interactions in lowland tropical rice: a review. Agricultural Water Management, 31(3), 165-184.

Bohn, Briain. L., McNeal, George. A., Oconnor and Hinrich. L. 1979. Soil Chemistry. John Wiley and Sons, pp: 144-148.

Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464-465.

Brand, J. D., Tang, C., and Graham, R. D. (2000). The effect of soil moisture on the tolerance of Lupinus pilosus genotypes to a calcareous soil. Plant and soil, 219(1-2), 263-271.

Bremner, J. M., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., and Sumner, M. E. (1996). Nitrogen-total. Methods of soil analysis. Part 3-Chemical Methods, pp. 1085-1121.

Cannell, R. Q. (1977). Soil aeration compaction in relation to root growth and soil management (No. REP-2475. CIMMYT.).

Chapman, H. D., and Pratt, P. F. (1962). Methods of Analysis for Soils, Plants and Waters. Soil Science, 93(1), 68.

Coulombe, B. A., Chaney, R. L., and Wiebold, W. J. (1984). Bicarbonate directly induces iron chlorosis in susceptible soybean cultivars. Soil Science Society of America Journal, 48(6), 1297-1301.

Cui, M., and Caldwell, M. M. (1997). A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field. Plant and Soil, 191(2), 291-299.

Doner, H. E., and Lynn, W. C. (1989). Carbonate, halide, sulfate, and sulfide minerals. Minerals in Soil Environments, pp. 279-330.

 Flocker, W.J., Vomocil, A.J. and Howard, F.D. (1959). Some growth responses of tomatoes to soil compaction. Soil Society of America Journal, 23, 188-191.

Foth, H. D. (1991). Fundamentals of Soil Science, John Wiley and Sons, Inc.

Fotovat, A., Naidu, R., and Sumner, M. E. (1997). Water: soil ratio influences aqueous phase chemistry of indigenous copper and zinc in soils. Australian Journal of Soil Research, 35, 687-709.

Gibbs, J., and Greenway, H. (2003). Review: Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology, 30(3), 353-353.

Grable, A. R., and Siemer, E. G. (1968). Effects of bulk density, aggregate size, and soil water suction on oxygen diffusion, redox potentials, and elongation of corn roots. Soil Science Society of America Journal, 32(2), 180-186.

Grime, J. P., and Curtis, A. V. (1976). The interaction of drought and mineral nutrient stress in calcareous grassland. The Journal of Ecology, 64, 975-988.

Grime, J. P., Crick, J. C., and Rincon, J. E. (1985). The ecological significance of plasticity. In: Symposia of the Society for Experimental Biology, 40, 5-29.

Inskeep, W. P., and Bloom, P. R. (1984). A comparative study of soil solution chemistry associated with chlorotic and nonchlorotic soybeans in western Minnesota. Journal of Plant Nutrition, 7(1-5), 513-531.

Jalali, M. (2008). Effect of sodium and magnesium on kinetics of potassium release in some calcareous soils of western Iran. Geoderma, 145(3), 207-215.

Kirkham, M. B. (2014). Principles of Soil and Plant Water Relations. Academic Press.

Litaor, M. I. (1988). Soil solution chemistry in an alpine watershed, Front Range, Colorado, USA. Arctic and Alpine Research, pp. 485-491.

Mahmoodi. Sh., and Hakimian. M. (2007). Fundamentals of Soil Science. University of Tehran Press, pp. 520-527, (In Persian).

Malakuti. M.J. (1991). Soil Fertility and Fertilizer. University Tehran press, 800p. (In Persian).

Marschner, H. (2011). Mineral Nutrition of Higher Plants. Academic press.

McBride, M. B. (1994). Environmental chemistry of soils. Oxford university press.

McCray, J. M., and Matocha, J. E. (1992). Effects of soil water levels on solution bicarbonate, chlorosis and growth of sorghum. Journal of Plant Nutrition, 15(10), 1877-1890.

Menzies, N. W., and Bell, L. C. (1988). Evaluation of the influence of sample preparation and extraction technique on soil solution composition. Soil Research, 26(3), 451-464.

Mirzaei. M., Varoei. M., Fekri and Mahmoodabadi M. (2014). Effect of different salts on soluble potassium leaching in soil columns. Journal of Soil Management and Sustainable Production, 4(2), 201-214.

Misra, A. (2003). Influence of water conditions on growth and mineral nutrient uptake of native plants on clacareous soil. Lund University Publication.

Morard, P., Lacoste, L., and Silvestre, J. (2004). Effect of oxygen deficiency on mineral nutrition of excised tomato roots. Journal of Plant Nutrition, 27(4), 613-626.

Nelson, D. W., and Sommers, L. (1982). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, pp. 539-579.

Olsen SR and Sommers LE. 1982. Phosphorus. In: Page AL, Miller RH and Keeney DR (ed.), Methods of soil analysis part 2, America Society Agronomy, Soil Science Society of America Journal, Madison Wisconsin, pp. 403-430.

Ouyang, Y., and Boersma, L. (1992). Dynamic oxygen and carbon dioxide exchange between soil and atmosphere: II. Model simulations. Soil Science Society of America Journal, 56(6), 1702-1710.

Page, A.L., R.H. Miller and D.R. Keeney. 1992. Method of Soil Analysis. Part II: Chemical and Mineralogical Properties (Second Edition). Madison, Wisconsin: SSSA.

Ponnamperuma, F. N. (1972). The chemistry of submerged soils New York: Academic Press. 24, 29-88.

Robinson, D. (1994). The responses of plants to non‐uniform supplies of nutrients. New Phytologist, 127(4), 635-674.

Ryan, J., and Hariq, S. N. (1983). Transformation of incubated micronutrient chelates in calcareous soils. Soil Science Society of America Journal, 47(4), 806-810.

Schaffer, B., Andersen, P. C., and Ploetz, R. C. (1992). Responses of fruit crops to flooding. Horticultural Reviews, 13, 257-313.

Sparks, D. L. (1987). Potassium Dynamics in Soils. In: Advances in Soil Science, Springer New York, pp: 1-63.

Stępniewski, W., and Przywara, G. (1992). The influence of soil oxygen availability on yield and nutrient uptake (N, P, K, Ca, Mg, Na) by winter rye (Secale cereale). Plant and Soil, 143(2), 267-274.

Stepniewski, W., Ball, B. C., Soane, B. D., and Ouwerkerk, C. V. (1994). Effects of compaction on soil aeration properties. Soil Compaction in Crop Production, pp. 167-189.

Tributh, H., Boguslawski, E. V., Lieres, A. V., Steffens, D., and Mengel, K. (1987). Effect of potassium removl by crops on transformation of illitic clay minerals. Soil Science, 143(6), 404-409.

Verrecchia, E. P., and Dumont, J. L. (1996). A biogeochemical model for chalk alteration by fungi in semiarid environments. Biogeochemistry, 35(3), 447-470.

Wesseling, J., Van Wijk, W. R., Fireman, M., van't Woudt, B. D., and Hagan, R. M. (1957). Land drainage in relation to soils and crops. Drainage of Agricultural Lands, 461-578.

Wodarczyk, T., Stepniewski, W., Brzezinska, M., and Przywara, G. (2008). Impact of different aeration conditions on the content of extractable nutrients in soil. International Agrophysics, 22, 371-375.

Wolt, J. D. (1994). Soil Solution Chemistry: Applications to environmental science and agriculture. John Wiley and Sons.

Yen, P. Y., Inskeep, W. P., and Westerman, R. L. (1988). Effects of soil moisture and phosphorus fertilization on iron chlorosis of sorghum. Journal of Plant Nutrition, 11(6-11), 1517-1531.

Li, Y., Liu, Y., Wang, Y., Niu, L., Xu, X., and Tian, Y. (2014). Interactive effects of soil temperature and moisture on soil N mineralization in a Stipa krylovii grassland in Inner Mongolia, China. Journal of Arid Land, 6(5), 571-580.

Zeroni, M., Gale, J., and Ben-Asher, J. (1983). Root aeration in a deep hydroponic system and its     effect on growth and yield of tomato. Scientia Horticulturae, 19(3), 213-22.