نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه زراعت و اصلاح نباتات، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.

2 دانشیار، هیات علمی موسسه تحقیقات خاک و آب، کرج، ایران.

3 دانش آموخته کارشناسی ارشد زراعت، واحد رشت، دانشگاه آزاد اسلامی، رشت، ایران.

چکیده

به‌‌منظور بررسی اثر کمپوست آزولا پارامترهای کمی و کیفی برنج تحت تلقیح با باکتری‌های محرک رشد گیاه، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک‌های کامل تصادفی با سه تکرار در در استان گیلان انجام شد. فاکتورهای آزمایشی شامل سه سطح کمپوست آزولا (صفر، 5 و 10 تن در هکتار) و باکتری‌های محرک رشد گیاه در سه سطح (عدم تلقیح، هربا‌سپیریلوم، آزوسپیریلوم) بودند. نتایج نشان داد که اثر باکتری بر فسفاتاز اسیدی و قلیایی معنی‌دار بود به طوری که باکتری آزوسپریلوم برتری معنی‌دار نسبت به تیمار عدم تلقیح و باکتری هرباسپریلوم داشت. همچنین کاربرد ۱۰ تن در هکتار کمپوست آزولا افزایش معنی‌دار در فعالیت فسفاتاز اسیدی نسبت به عدم کاربرد کمپوست نشان داد. همچنین برهمکنش کمپوست آزولا و باکتری‌ بر تعداد پنجه، تعدادپنجه، طول بوته، تعداد دانه پر در خوشه، عملکرد بیولوژیک و عملکرد شلتوک معنی‌دار بود. حداکثر عملکرد شلتوک از تیمار ۱۰ تن در هکتار کمپوست آزولا + باکتری آزوسپربلوم با میانگین ۷۹۴۶ کیلوگرم در هکتار به دست آمد که نسبت به تیمار شاهد ۲۸/۳۱ درصد و تیمار ۱۰ تن در هکتار کمپوست آزولا، ۴۷/۲۷ درصد افزایش عملکرد نشان داد. همچنین تلقیح باکتریایی، فسفر دانه را نسبت به تیمار عدم تلقیح به طور معنی‌دار افزایش داد. ضمن آن که بیشترین مقدار فسفر و پتاسیم دانه به ترتیب از سطح ۱۰ و ۵ تن در هکتار کمپوست آزولا مشاهده شد. بنابراین با توجه به نتایج به دست آمده برای حصول حداکثر عملکرد برنج کاربرد ۱۰ تن در هکتار کمپوست آزولا به همراه تلقیح با باکتری آزوسپریلوم پیشنهاد می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Effect of Azolla compost on qualitative and quantitative parameters of rice under PGPRs inoculated

چکیده [English]

In order to evaluate the effect of Azolla compost on qualitative and quantitative parameters of the rice under PGPRs inoculated, a factorial experiment in a randomized complete block design with three replications was conducted in Guilan province. Experimental Factors including Azolla compost (0, 5 and 10 ton.ha-1) and plant growth promoting bacteria (non-inoculated, Herbaspirillum, Azospirillum). The results showed that the bacterial effect on acidic and alkaline phosphatase was significant so that the Azospirillum was superiority compared to non-inoculated treatment and Herbaspirillum. The use of 10 ton.ha-1 of Azolla compost significantly increased in activity of acid phosphatase. Interaction of Azolla compost and PGPRs on tiller numbers, plant height, grains number.panicle-1, biomass and grain yield were significant. The maximum grain yield was obtained from 10 ton.ha-1 of Azolla compost + Azospirillum with 7946 kg.ha-1 that compared to the control and 10 ton.ha-1 of Azolla compost had increased 31.28 and 27.47 percent, respectively. The bacterial inoculation, increased significantly phosphorous compared with non-inoculated treatment. While the maximum amount of phosphorus and potassium was observed. 10 and 5 ton.ha-1 of Azolla compost, respectively. Thus, according to the results obtained for the maximum seed yield 10 ton.ha-1 of Azolla compost as well as Azospirillum inoculation is recommended.

کلیدواژه‌ها [English]

  • "Acidic and alkaline Phosphatase"
  • " Azospirillum"
  • " Herbaspirillum"
  • " Phosphorus"
  • " Potassium"
Ahmad H. 2002. Productivity and economics of rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping system under integrated nutrient supply systems. Indian Journal of Agronomy, 47(1): 20-25.
Ali-Abbasi H.R., Esfahani M., Rabiei B., and Kavousi M. 2006. Effect of nitrogen management on rice yield (Oryza sativa L. cv. Khazar.) and its components in a paddy soil in Gilan. Journal of Science and Technology of Agriculture and Natural Resources, 4: 293-308. (In Persian).
Alidoust M., Mohammadi Torkashvand A., and Mahboub Khomami A. 2012. The effect of growth medium of peanut shelles compost and nutrient solution on the growth of Dracaena. Annals of Biological Research, 3(2): 789-794.
Bashan Y., Singh M., and Levanony H. 1989. Contribution of Azospirillum brasilense Cd to growth of tomato seedlings is not through nitrogen fixation. Canadian Journal of Botany, 67: 2429-2434.
Bashan Y., and Holguin G. 1997. Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Canadian Journal of Microbiology, 43: 103-121.
Biswas L.C., Ladha L.k., and Dazzo F.B. 2000. Rhizobial inoculation improves, nutrient uptake and growth of low land rice. Soil Science Society of America Journal, 64: 1644-1650.
Cheng W., Sakai H., Matsushima M., Yagi K., and Hasegawa T. 2010. Response of the floating aquatic fern Azolla filiculoides to elevated CO2, temperature, and phosphorus levels. Hydrobiologia, 656: 5–14.
Das A., Patel D.P., Munda G.C., and Ghosh P.K. 2010. Effect of organic and inorganic sources of nutrients on yield, nutrient uptake and soil fertility of maize (Zea mays)-mustard (Brassica campestris) cropping system. Indian Journal of Agricultural Sciences, 80(1): 85-8.
Eivazi. F., and Tabatabai M. 1977. Phosphates in soils. Soil Biology and Biochemistry, 9: 167-172.
Emami, A. 1996. Plant analysis methods. Iranian Plant and Water Research Institute. No. 928. (In Persian).
Fallah A., Momeni S., and Shariati S. 2014. Effect of PGPR biofertilizers on the qualitative and quantitative yield parameters of wheat (Triticum aestivum). Applied Soil Research, 2(1): 103-114.
Jenny S., and Malliga P. 2006. Influence of organic manure on morphological and yield attributes of tomato (Solanum lycopersicum L.) plants. International Journal of Innovative Research in Science and Engineering, 2(3): 1-6.
Jumadi O., Hiola S.F., Hala Y., Norton J., and Inubushi K. 2014. Influence of Azolla (Azolla microphylla Kaulf.) compost on biogenic gas production, inorganic nitrogen and growth of upland kangkong (Ipomoea aquatica Forsk.) in a silt loam soil. Soil Science and Plant Nutrition, 60(5): 722-30.
Khan A., Arshad M., and Zahir Z.A. 2007. Growth and yield response of wheat cultivars to inoculation with auxin producing plant growth promoting rhizobacteria. Pakistan Journal of Botany, 35: 483–49.
Lavakush Y.J., Verma J.P., Jaiswal D.K., and Kumar A. 2014. Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecological Engineering, 62: 123-8.
Meena R.K., Singh Y.V., Lata A., Kumar A., and Bana R.S. 2010. Effect of plant-growth-promoting rhizobacteria inoculation on plant growth, productivity and economics of Basmati rice. Egyptian Journal of Biology, 16(1): 45-50.
Norton J.M., and Stark J.M. 2011. Regulation and measurement of nitrification in terrestrial systems. Methods Enzymol, 486: 343–368.
Rahimi L., Aliasgharzad N., and Oustan S.H. 2012. Effect of native Azotobacter chroococcum strains on growth and uptake of nitrogen and phosphorus by wheat plant in greenhouse conditions. Isfahan University of Technology, 15(58): 159-171. (In Persian).
Ramesh P., Panwar N.R., Singh A.B., Ramana S., and Rao A.S. 2009. Impact of organic manure combinations on the productivity and soil quality in different cropping systems in Ramesh. Central Indian Journal of Plant Nutrition, 172(4): 577-585.
Razavipour T. 2004. Beneficial use of Azolla as fertilizer. Rice Research Institute of Iran. 121p. (In Persian).
Rehana B., Mian M.H., Tahirruddin M., and Hasan M.A. 2003. Effect of Azolla-Urea application on yield and NPK uptake by BRRI Dhan 29 in Boro season. Pakistan Journal of Biological Sciences, 6(11): 968- 971.
Relwani L., Krishna P., and Reddy M.S. 2008. Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis.Current Microbiology, 57: 401- 406.
Sanati B.E, Daneshiyan J., Amiri E., and Azarpour E. 2011. Study of organic fertilizers displacement in rice sustainable agriculture. International Journal of Academic Research, 3(2): 134-142.
Sharma S., Thind H.S., Singh Y., Singh V., and Singh B. 2015. Soil enzyme activities with biomass ashes and phosphorus fertilization to rice–wheat cropping system in the Indo-Genetic plains of India. Nutrient Cycling in Agroecosystems, 101(3): 391-400.
Sharma A., Shankhdhar D., and Shankhdhar S.C. 2014. Growth promotion of the rice genotypes by PGPR isolated from rice rhizosphere. Journal of Soil Science and Plant Nutrition, 14(2): 505-17.
Sharma A.R., and Singh D.P. 1999. Rice. In: Smith, D.L. and Mamel, C. (Eds.) Crop Yield, Physiology and Processes. Springer, Berlin, pp. 109-168.
Siavoshi M., Nasiri A., and Laware S.L. 2011. Effect of organic fertilizer on growth and yield components in rice (Oryza sativa L.). Journal of Agricultural Science, 18(2): 217-228.
Sreenivasa M.N. 2012. Organic farming: for sustainable production and environmental protection. In microorganisms in sustainable agriculture and biotechnology, 23(1): 55-76.
Vessey J.K. 2003. Plant growth-promoting rhizobacteria as biofertilizers. Plant and Soil, 255: 571– 586.
Wu S.C., Caob Z.H., Lib Z.G., Cheunga K.C., and Wong M.H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125: 155-166.
Yahalom E.K., and Okon Y. 2004. Response of seraria italic to inoculation with Azospirillum brasilense as compared to Azotobacter chroccoum. Plant and Soil, 82: 77-85.
Zaller J.G. 2007. Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae, 112: 191-199.
Zhu X., Silva C.R.S., Doane T.A., Wu N., and Horwath R.H. 2013. Quantifying the effects of green waste compost application, water content and nitrogen fertilization on nitrous oxide emissions in 10 agricultural soils. Journal of Environmental Quality, 42: 912–918.