آزمودن ورودی‌های جدید برای برآورد هدایت هیدرولیکی نزدیک اشباع خاک

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد علوم خاک، دانشکده کشاورزی، انشگاه ارومیه

2 دانشگاه ارومیه

3 عضو هیئت علمی دانشگاه ارومیه

چکیده

هدایت هیدرولیکی نزدیک اشباع (Ks) خاک از ویژگی‌های‌ کلیدی برای اهداف مختلف از جمله شبیه‌سازی فرایندهای هیدرولوژیکی، تعیین تابع هدایت هیدرولیکی غیراشباع خاک و مدل‌سازی جریان آب و انتقال املاح است. چون Ks یک ویژگی وابسته به ساختمان خاک است، برای به حداقل رساندن دست‌خوردگی حجم خاک نمونه‌برداری شده معمولا از روش‌های اندازه-گیری صحرایی استفاده می‌شود. به دلیل تغییرپذیری بالای مکانی- زمانی Ks، اندازه‌گیری‌های (تکرار) زیادی لازم است؛ بنابراین روش مورد استفاده، همانند روش بار افتان ساده‌سازی شده (SFH)، بایستی به اندازه کافی سریع و ساده باشد. همچنین می‌توان از توابع انتقالی خاک (PTFs) برای برآورد غیرمستقیم Ks از طریق دیگر ویژگی‌های خاک بهره برد. هدف از این پژوهش، آزمودن ورودی‌های جدید برای برآورد Ks خاک در خاک‌های متأثر از نمک حاشیه دریاچه ارومیه بود. از استوانه‌ای با قطر 32 سانتی‌متر برای اندازه‌‌گیری Ks با روش SFH در خاک‌هایی با سطوح مختلف شوری (هدایت الکتریکی عصاره اشباع، dS/m 95-1/0ECe = ) سدیم (درصد سدیم تبادلی، %80-4ESP = ) استفاده شد. در کل 190 نمونه با روش SFH اندازه‌گیری شد و از همسایگی نزدیک هر نقطه، تعدادی نمونه‌ خاک دست‌نخورده (با استوانه‌ای به قطر 5 سانتی‌متر و ارتفاع 5 سانتی‌متر) و دست‌خورده به صورت تصادفی از خاک سطحی جمع‌آوری و ویژگی‌های فیزیکی و شیمیایی آن‌ها تعیین شدند. خاک‌های مورد مطالعه عمدتاً دارای Ks متوسط (تقریباً 40 درصد از خا‌ک‌ها) تا نسبتاً تند (تقریباً 48 درصد) بودند. تجزیه همبستگی و رگرسیون گام‌به‌گام نشان داد که Ks با جرم ویژه ظاهری (b) (205/0- r =)، شاخص سله‌بندی (Ic) (180/0- r =) و درجه تراکم خاک (SDC) (206/0- r =) همبستگی منفی (01/0P≤) و با شاخص پایداری ساختمان خاک (SSI) (184/0r =) و میانگین هندسی قطر خاکدانه‌ها (GMD) (157/0r =) همبستگی مثبت (05/0P≤) داشت. افزون بر این، Ks با ECe و ESP خاک ارتباطی منفی داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Testing of new inputs to predict near-saturated soil hydraulic conductivity

نویسندگان [English]

  • Peyman Shaker Shahmarbeigloo 1
  • Hamidreza Momtaz 3
1 Graduate MSc Student, Soil Science Department, Urmia University
3 Assistant Professor, Department of Soil Science, Urmia University
چکیده [English]

Near-saturated soil hydraulic conductivity (Ks) is a key property for several purposes including simulation of hydrological processes, determination of unsaturated soil hydraulic conductivity function and modelling water flow and solute transport. Since it is soil structure-dependent, field measurement techniques should be used to minimize disturbance of the sampled soil volume. Because of high spatiotemporal variability of Ks, replicated measurements need to be carried out, so that, the method to be applied should be simple and rapid enough as the simplified falling head (SFH) technique is. Alternatively, pedotransfer functions (PTFs) could also be utilized for indirect prediction of Ks through the surrounding soil attributes. The objective of this study was to test some new inputs to predict the Ks of salt-affected soils adjacent to Lake Urmia. A 32 cm diameter ring was used to determine Ks by the SFH technique in soils with different salinity (electrical conductivity of saturated extract, ECe = 0.1 – 95.3 dS/m) and sodicity (exchangeable sodium percentage, ESP = 4 – 70.9 %) levels. A total of 190 SFH runs were carried out, adjacent to each of which, some undisturbed soil cores (5 cm in height by 5 cm in diameter) and disturbed soil samples were randomly collected from the surface soil and were analyzed for their physicochemical properties. The studied soils mainly had moderate (≈ 40%) to moderately rapid (≈ 48%) conductivities. Correlation and stepwise regression analysis showed that Ks was correlated negatively with bulk density (ρb) (r = -0.205), index of crusting (Ic) (r = -0.180), and degree of compaction (SDC) (r = -0.206) (P ≤ 0.01) and positively with structural stability index (SSI) (r = 0.184) and geometric mean diameter of soil aggregates (GMD) (r = 0.157) (P ≤ 0.05). Furthermore, the Ks had negative correlation with both soil ECe and ESP.

کلیدواژه‌ها [English]

  • Simplified falling head (SFH
  • Soil hydraulic conductivity
  • Spatial variability
  • Pedotransfer functions
References

Afandi A., Manik T.K., Rosadi B., Utomo M., Senge M., Adachi T., and Oki Y. 2003. Soil physical properties under coffee trees with different weed managements in hilly humid tropical area of Lampung, south Sumatra, Indonesia. Journal of the Japanese Society of Soil Physics, 92: 3-16.

Aimrun W., Amin M.S.M., and Eltaib S.M. 2004. Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma, 121: 197-203.

Ajwa H.A., and Trout T.J. 2006. Polyacrylamide and water quality effects on infiltration in sandy loam soils. Soil Science Society of America Journal, 70: 643-650.

Alizadeh H.A., Nazari B., and Liaghat A. 2009. Evaluation of simplified falling head (SFH) method for measuring saturated hydraulic conductivity. Journal of Water and Soil, 23(2): 55-62.

Bagarello V., and Sgroi A. 2007. Using the simplified falling head technique to detect temporal changes in field-saturated hydraulic conductivity. Soil and Tillage Research, 94: 283-294.

Bagarello V., D'Asaro F., and Iovino M., 2012. Afield assessment of the Simplified Falling Head technique to measure the saturated soil hydraulic conductivity. Geoderma, 187: 49-58.

Bagarello V., Iovino M., and Elrick D. 2004. A simplified falling-head technique for rapid determination of field-saturated hydraulic conductivity. Soil Science Society of America Journal, 168: 66-73.

Bagarello V., Stefano C.D., Ferro V., Iovino M., and Sgroi A. 2010. Physical and hydraulic characterization of a clay soil at the plot scale. Journal of Hydrology, 387(1): 54-64.

Beckwith C.W., Baird A.J., and Heathwaite A.L. 2003. Anisotropy and depth-related heterogeneity of hydraulic conductivity in a bog peat. I: laboratory measurements. Hydrological Processes, 17: 89-101.

Bouma J. 1989. Using soil survey data for quantitative land evaluation. Advanced Soil Science, 9: 177-213.

Carter M.R. 2002. Soil quality for sustainable land management. Agronomy Journal, 94(1): 38-47.

Chapman H.D. 1965. Cation exchange capacity. In: Black C.A. (Ed.), Methods of Soil Analysis- Part 2. WI, American Institute of Agronomy, Madison, pp. 891–901.

Elrick D.E., Angulo-Jaramillo R., Fallow D.J., Reynolds W.D., and Parkin G.W. 2002. Infiltration under constant head and falling head conditions. Environmental Mechanics: Water, Mass and Energy Transfer in the Biosphere. In: Ratts P.A.C., Smiles D., Warrick A.W. (Ed.), Geophysical Monograph Series, 129: 47- 53.

FAO. 1979. Soil Survey Investigation for Irrigation. Rome. FAO, pp.188.

Ferrer Julia M., and Estrela M.T. 2004. Constructing a saturated hydraulic conductivity map of Spain using pedotransfer functions and spatial prediction. Geoderma, 123: 257-277.

Gee G.W., and Or D. 2002. Particle-size analysis. In: Dane J.H., and Topp G.C. (Ed.), Methods of Soil Analysis- Part 4. SSSA Book Series No. 5. SSSA, Madison, pp. 255–293.

Gharaibeh M.A., Eltaif N.I., and Shraah S.H. 2010. Reclamation of a calcareous saline-sodic soil using phosphoric acid and by product gypsum. Soil Use and Management, 26: 93-195.

Goldberg S., and Forster H. 1991. Boron Sorption On Calcareous Soils And Reference Calcites. Soil Science, 152(4): 304-310.

Govindaraju R.S., Corradini C., and Morbidelli R. 2012. Local‐and field‐scale infiltration into vertically non‐uniform soils with spatially‐variable surface hydraulic conductivities. Hydrological Processes, 26(21): 3293-3301.

Gupta N., Rudra R.P., and Parkin G. 1996. Analysis of spatial variability of hydraulic conductivity at field scale. Canadian Biosystem Engineering, 48 (1): 55-62.

Gupta S.C., Shoarma P.P., and Da Franchi S.A. 1989. Compaction effects on soil structure. Advances in Agronomy, 42: 311- 338.

Hassler S.K., Lark R.M., Zimmermann B., and Elsenbeer H. 2014. Which sampling design to monitor saturated hydraulic conductivity? European Journal of Soil Science, 65 (6): 792-802.

Jabro J.D. 1992. Estimation of saturated hydraulic conductivity of soils from particle size distribution and bulk density data. Transactions of the ASAE, 35(2): 557-560.

Jalali V.R., and Homaee M. 2011. A Nonparametric Model by using k-nearest neighbor Technique for Predicting Soil Saturated Hydraulic Conductivity. Journal of Water and Soil, 25 (2): 347-355. (In Persian).

Kelishadi H., Mosaddeghi M.R., Hajabbasi M.A., and Ayoubi S. 2014. Near-saturated soil hydraulic properties as influenced by land use management systems in Koohrang region of central Zagros, Iran. Geoderma, 213: 426-434.

Khodaverdiloo H., Khani H., Cheraghabdal V., Bagarello M., Asgarzadeh H., Ghorbani Dashtaki S. 2017. Ring diameter effects on determination of field-saturated hydraulic conductivity of different loam soils. Geoderma, 303: 60–69.

Khodaverdiloo H., Homaee M., van Genuchten M.Th., and Ghorbani Dashtaki S. 2011. Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology, 399: 93-99.

Kuht J., and Reintam E. 2004. Soil compaction effect on soil physical properties and the content of nutrients in spring barley and wheat. Agronomy Research, 2(2): 187-194.

Lado M., Paz A., and Ben-Hur M. 2004. Organic matter and aggregate-size interactions in saturated hydraulic conductivity. Soil Science Society of America Journal, 68(1): 234-242.

Lavkulich L.M. 1981. Methods manual, pedology laboratory. Department of Soil Science, University of British Columbia, Vancouver, Canada.

Lebron I., Suarez D.L., and Yoshida T. 2002. Gypsum effect on the aggregate size and geometry of three sodic soils under reclamation. Soil Science Society American Journal, 66: 92-98.

Leroy B.L.M., Herath H.M., Sleutel S., De Neve S., Gabriels D., Reheul D., and Moens M. 2008. The quality of exogenous organic matter: short-term effects on soil physical properties and soil organic matter fractions. Soil Use and Management, 24: 139-147.

Levy G.J., Goldstein D., and Mamedov A.I. 2005. Saturated hydraulic conductivity of semiarid soils: Combined effects of salinity, sodicity, and rate of wetting. Soil Science Society of America Journal, 69(3): 653-662.

MacDonald A.M., Maurice L., Dobbs M.R., Reeves H.J., and Auton C.A. 2012. Relating in situ hydraulic conductivity, particle size and relative density of superficial deposits in a heterogeneous catchment. Journal of Hydrology, 434: 130-141.

Marcolin C.D., and Klein V.A. 2011. Determination of relative soil density through a pedotransfer function of maximum bulk density. Acta Scientiarum Agronomy, 33(2):349-354

Merdun H., Cinar O., Meral R., and Apan M. 2006. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil and Tillage Research, 90: 108-116.

Miller J.J., and Curtin D. 2006. Electrical conductivity and soluble ions. In: Carter M.R., Gregorich E.G. (Eds.), Soil Sampling and Methods of Analysis, Boca Raton, pp. 161–171.

Moazenzadeh R., Ghahraman B., Fathalian F., and Khoshnood Yazdi A.A. 2009. Effect of type and number of input variables on moisture retention curve and saturated hydraulic conductivity prediction. Journal of Water and Soil, 23(3): 57-70. (In Persian).

Navabian M., Liaghat A.M., and Homaee M. 2004. Estimating soil saturated hydraulic conductivity using pedotransfer functions. Journal of Agricaltural Engineering Research, 4(16): 1-11.

Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. In: Method of Soil Analysis. 2nd Edition, American Society of Agronomy, Madison, pp. 539-579.

Nemes A., Rawls W.J., and Pachepsky Y.A. 2005. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Science Society of America Journal, 69: 1330-1337.

Pachepsky Y.A., Rawls W.J., and Lin H.S. 2006. Hydropedology and pedo-transfer functions. Geoderma, 131: 308–316.

Papanicolaou A.T.N., Elhakeem M., Wilson C.G., Burras C.L., West L.T., Lin H.H., and Oneal B.E. 2015. Spatial variability of saturated hydraulic conductivity at the hillslope scale: Understanding the role of land management and erosional effect. Geoderma, 243: 58-68.

Papanicolaou A.N., Elhakeem M., Wilson C.G., Burras C.L., and Oneal B. 2008. Observations of soils at the hillslope scale in the Clear Creek Watershed in Iowa, USA. Soil Survey Horizons Journal, 49: 83-86.

Philip J.R. 1992. Falling head ponded infiltration. Water Resources Research, 28: 2147-2148.

Rawls W.J., Gimenez D., and Grossman R. 1998. Use of soil texture, bulk density, and slope of the water retention curve to predict saturated hydraulic conductivity. Transactions of the ASAE, 41(4): 983-988.

Rayment G.E., Higginson F.R. 1992. Australian laboratory handbook of soil and water chemical methods. Inkata Press, Melbourne.

Reynolds W.D., Bowman B.T., Brunke R.R., Drury C.F., and Tan C.S. 2000. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Science Society of America Journal, 64: 478-484.

Reynolds W.D., Drury C.F., Tan C.S., Fox C.A., and Yang X.M. 2009. Use of indicators and pore volume-function characteristics to quantify soil physical quality. Geoderma, 152(3): 252-263.

Reynolds W.D., and Elrick D.E. 1992. Methods for analyzing constant head well permeameter data. Soil Science Society of America Journal, 56: 320-323.

Reynolds W.D. 2006. Saturated hydraulic properties. Ring infiltrometer. In: Carter M.R., and Gregorich E.G. (Ed.), Soil sampling and method of analysis- Part 77. Taylor and Francis Group, LLC Published, pp. 1043-1056.

Shukla M.K., and Lal R. 2005. Erosional effects on soil physical properties in an on-farm study on Alfisols in West Central Ohio. Soil Science, 170(6): 445-456.

Slazar O., Wesstrom I., and Joel A. 2008. Evaluation of DRAINMOD using saturated hydraulic conductivity estimated by a pedotransfer function model. Agricultural Water Management, 95(10): 1135-1143.

Sobieraj J.A., Elsenbeer H., and Vertessy R.A. 2002. Pedotransfer functions for estimating saturated hydraulic conductivity. Journal of Hydrology, 251: 202-220.

Srivastava P.K., Gupta M., Pandey A., Pandey V., Singh N., and Tewari S.K. 2014. Effects of sodicity induced changes in soil physical properties on paddy root growth. Journal of Plant, Soil and Environmental, 60(4): 165–169.

Van Bavel C.H.M. 1949. Mean weight diameter of soil aggregates as a statistical index of aggregation. Soil Science Society of America Journal, 14: 20-24.

Wagenet R.J., Bouma J., and Grossman R.B. 1991. Minimum data sets for use of soil survey information in soil interpretive models. In: Mausbach M.J., and Wilding L.P. (Ed.), Spatial Variabilities of Soils and Landforms. SSSA Special Publied, SSSA, Madison, WI.

Wagner B., Tarnawski V.R., Hennings V., Müller U., Wessolek G., and Plagge R. 2001. Evaluation of pedo-transfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma, 102: 275-297.

Wosten J.H., Pachepsky M., Ya A., and Rawls W.J. 2001. Pedotransfer functions: bridging gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251: 123-150.

Zhang Z.F., and Ward A.L. 2011. Determining the porosity and saturated hydraulic conductivity of binary mixtures. Vadose Zone Journal, 10(1): 313-321.