تاثیر سطوح مختلف نیتروژن و نسبت‌های مختلف نیترات به آمونیوم برترکیب شیمیایی و درصد اسانس آویشن دنایی در شرایط شور و غیرشور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه خاکشناسی، دانشکده کشاورزی، دانشگاه ارومیه

2 دانشگاه ارومیه

چکیده

به‌منظور بررسی سطوح مختلف نیتروژن و نسبت‌های مختلف نیترات به آمونیوم در شرایط شور و غیر شور بر غلظت سبزینه، عناصر غذایی و اسانس آویشن دنایی (Thymus daenensis subsp. daenensis Celak)، آزمایشی به‌صورت فاکتوریل در قالب طرح بلوک­های کامل تصادفی با 30 تیمار و 3 تکرار. با عامل‌های نیتروژن در سه سطح (5، 10و 15 میلی­مولار)، نسبت­های مختلف نیترات به آمونیوم در پنج سطح (100:0, 75:25, 50:50, 25:75, 0:100) و شوری در دو سطح (0 و50 میلی­مولار سدیم کلرید) در شرایط گلخانه انجام گرفت. نتایج نشان داد با افزایش سطوح نیتروژن غلظت عناصر غذایی، غلظت سبزینه، درصد و عملکرد اسانس افزایش یافت. همچنین تأثیر نسبت­های مختلف نیترات به آمونیوم نشان داد که با افزایش نیترات در محلول غذایی غلظت پتاسیم، سدیم و غلظت سبزینه در گیاه افزایش، و با افزایش آمونیوم در محلول غذایی غلظت نیتروژن، فسفر، آهن، مس و روی در بافت گیاهی افزایش یافت. شوری باعث کاهش غلظت عناصر غذایی، غلظت سبزینه و درصد اسانس و افزایش غلظت سدیم در بافت گیاهی شد. بیشترین درصد و عملکرد اسانس در شرایط غیر شور از نسبت 25:75 و در شرایط شور از نسبت 50:50 نیترات به آمونیوم به دست آمد. برای دستیابی به بیشترین درصد و عملکرد اسانس از سطح نیتروژن 15 میلی­مولار و در شرایط غیر شور از نسبت 25:75 نیترات به آمونیوم و در شرایط شور از نسبت 50:50 نیترات به آمونیوم استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of different levels of nitrogen and different ratios of nitrate: ammonium on chemical composition and essential oil of denaii thyme in saline and non-saline conditions

نویسندگان [English]

  • simin shahoori 1
  • ebrahim sepehr 2
  • amir rahimi 2
1 Dept. of Soil science, Faculty of Agriculture, Urmia University, Iran
2 urmia
چکیده [English]

In order to study the different levels of nitrogen and different nitrate: ammonium ratios in saline and non-saline conditions on the content of chlorophyll, the amount of nutrients and essential oil of denaii thyme, a factorial experiment was conducted in a randomized complete block design with 30 treatments and 3 replications. Nitrogen in three levels (5, 10 and 15 mM), nitrate: ammonium ratios in five levels (100: 0, 75:25, 50:50, 25:75, 0: 100) and salinity in two levels (0 and 50 mM Sodium Chloride) were treated. Results showed that the concentration of nutrients, chlorophyll content and essential oil yield were increased by increasing in nitrogen amount. In terms of different nitrate: ammonium ratios, the concentration of potassium, sodium and chlorophyll content in plant were increased by increasing nitrate ratio, whereas the concentration of nitrogen, phosphorus, iron, copper and zinc in plant tissues were increased by increasing ammonium ratio. Salinity reduced the concentration of nutrients, chlorophyll content and essential oil percentage and increased sodium concentration in plant tissues. The highest percentage and yield of essential oil were obtained from the 75:25 ratio in non- saline conditions and from 50:50 ratio in saline conditions.

کلیدواژه‌ها [English]

  • Nitrogen
  • Nitrate
  • Ammonium
  • Salinity
Abd El-Daim I.A., 2015. Use of rhizobacteria for the alleviation of plant stress PhD. Thesis. Swedish University of Agricultural Sciences, Uppsala

Alami Y., Achouak W., Marol C., and Heulin T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Applied Environmental Microbiology, 66: 3393-8.

Archana D.S., Nandish M.S., Savlagi V.P. and Alagawadi A.R. 2013. Characterization of potassium solubilizing bacteria (KSB) from rhizospher soil. Bioinfolet, 10: 248-257.

Bent E., Tuzan S., Chanway C.P. and Enebak S. 2000. Alteration in plant growth and in root hormone levels of lodgeple pines inoculated with rhizobacteria. Canadian Journal of Microbiology, 47: 793-800.

Chang W.S., van de Mortel M., Nielsen L., Nino de Guzman G., and Li X. 2007. Alginate production by Pseudomonas putida creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water limiting conditions. Journal of Bacteriology, 189: 8290–8299.

Crowley D.E., Wang Y.C., Reid C.P.P., and Szaniszlo P.J. 1991. Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant and Soil, 130: 179-198.

E.E.A., 2011. Europe’s Environmentan Assessment of Assessments. European Environment Agency, Copenhagen.

Fleury D., Jefferies S., Kuchel H. and Langridge P. 2010. Genetic and genomic tools to improve drought tolerance in wheat. Journal of Experimental Botany, 61: 3211–3222.

Foley J.A., Ramankutty N., Brauman K.A., Cassidy E.S., and Gerber J.S. 2011. Solutions for a cultivated planet. Nature, 478: 337–342.

Glick B.R, 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169: 30–39.

Gupta A., and Gopal M. 2008. Siderophore production by plant growth promoting rhizobacteria. Indian Journal of Agricultral Research, 42: 153 -156.

Ipek M., and Estiken A. 2017. The action of PGPR on micronutrient availability on soil and plant under calacareous soil condition: An evalution over Fe nutrition. Plant and Microb Interaction in Agro-Ecological, 5: 81-100.

Jayasinghearachchi H.S., and Seneviratne G. 2006. Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biology and Biochemistry, 38: 405-408.

Karimi E., Aliasgharzad N., Neishabouri M. R., and Esfandiari E. 2017. Effect of biofilm PGPRs in alleviation of terminal growth stage water shortage on wheat’s component yield and root. Iranian Journal of Dryland Agriculture, 6: 89-102. (In Persian)  

Kasim W.A., Gaafar RM, Abou-Ali R.M, Omar M.N., and Hewait H.M. 2016. Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Annals of Agricultural Science, 61: 217–227.

Kavamura V.N., Santos S.N.,   Silva J.L., Parma M.M., Avila L.A., Visconti A., Zucchi T.D., Taketani R.G., Andreote F.D., Melo I.S. 2013. Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168: 183–191.

Khan L.A., Lee I.J. 2016. Indol acetic acid and ACC deaminase from endophytic bacteria improves the growth of Solanum lycopersicum. Electronic Journal of Biotechnology, 21: 58-64.

Kumar J.C., and Saraf M. 2015. Plant growth promoting rhizobacteria (PGPR): A review. Journal of Agricultural Research and Development, 5:0108-0119:

Morikawa M., Kagihiro S., Haruki M., Takano K., Branda S., Kolter R., and Kanaya S. 2006: Biofilm formation by a Bacillus subtilis strain that produces c-polyglutamate. Microbiology, 152: 2801–2807.

Nosrati R., Owlia P., Sderi H., Rasooli I., Malbobi M.A. 2014. Phosphate solublization characteristic of efficient nitrogen fixing soil Azotobacter strain. Iranian Journal of Microbiology, 6: 285-295. (In Persian) 

Pandey A., and Palni L.M.S. 1997. Bacillus species: The dominant bacteria of the rhizosphere of established tea. Microbiological Research, 152: 359-365.

Postma J.A., and Lynch J.P. 2011. Root cortical aerenchyma enhances growth of Zea mays L. on soils with suboptimal availability of nitrogen, phosphorus and potassium. Plant Physiology, 156: 1190–1201.

Saiyad S.A., Jhala Y.K., Vyas R.V. 2015. Comparative efficiency of five potash and phosphate solubilizing bacteria and their key enzymes useful for enhancing and improvement of soil fertility. International Journal of Scientific and Research Publications, 5: 1-6.

Saleh-Lakha S., and Glick BR. 2006. Plant growth-promoting bacteria. In: van Elsas J.D., Jansson J.K., Trevors J.T. (Eds) Modern Soil Microbiology. CRC/Thomson Publishing, Boca Raton, FL/UK, pp. 503–520.

Sanger F., Coulson A.R. 1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94 (3): 441–8.

Seneviratne G., Kecskes M.L., and Kennedy I.R. 2008. Biofilmed biofertilisers: Novel inoculants for efficient nutrient use in plants. In: Kennedy I.R., Choudhury A.T., Kecskes M.L., Rose M.T. (Eds.) Efficient nutrient use in rice production in Vietnam achieved using inoculants biofertilisers. Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, 12–13 October 2007. ACIAR Proceeding No. 130, ACIAR, Canberra. pp. 126–130.

Seneviratne G., Weerasekara M.L.M.A.W., Seneviratne K.A.C.N., Zavahir J.S, Kecskes M.L., and Kennedy I.R. 2010. Importance of biofilm formation in plant growth promoting rhizobacterial cction. In: Maheshwari D.K. (Eds) Plant Growth and Health Promoting Bacteria (Microbiology Monographs). Springer-Verlag Berlin Heidelberg.

Shinozaki K., and Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58: 221–227.

Shintu P.V., and Jayaram K.M. 2015. Phosphate solubilising bacteria (Bacillus polymyxa) an effective approach to mitigate drought in tomato (Lycopersicon esculentum Mill). Tropical Plant Research. 2:17–22.

Srdjan S., Dragana V., Ivana D., Branislava S., and Milena S.V. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40:175–179.

Stewart P.S., and Franklin M.J. 2008.  Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6: 199–210.

Vardharajula S., Ali S.Z., Grover M., Reddy G., and Venkateswaralu B. 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes antioxidant status and plant growth of maize under drought stress. Journal of Plant Growth Regulation, 62: 21–30.

Wang C.J., Yang W., Wang C., Gu C., Niu D.D., Liu H.X., Wang Y.P., and Guo J.H. 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One, 7: 525-565.

Yan F., Yu Y., Wang  L., Luo Y., Guo J., and Chai Y. 2016. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus. Frontier in Microbiology, 7: 1025-1037.

Zhang C., and Kong F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology, 82: 18–25.

Zhang H., Kim M.S., Krishnamachari V., Payton P., Sun Y., Grimson M., Farag M.A., Ryu, C.M. 2007. Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta, 226: 839–851.