بررسی تغییرات مکانی برخی ویژگی‌های خاک و ارتباط آن با عملکرد چای در منطقه فومن گیلان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 هیئت علمی گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

2 گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان

3 گروه زراعت و اصلاح نباتات دانشگاه گیلان

4 دانشیار گروه علوم خاک دانشگاه گیلان

چکیده

شناخت تغییرپذیری مکانی ویژگی‌های خاک به منظور شناسایی علل اساسی تغییرپذیری عملکرد و اجرای مدیریت صحیح مزارع و باغات، برای دستیابی به تولید بیشتر و مدیریت پایدار اراضی، امری ضروری است. در این پژوهش، تغییرات مکانی برخی ویژگی‌های خاک و ارتباط آن با عملکرد چای در منطقه فومن استان گیلان مورد بررسی قرار گرفت. به این منظور، نمونه‌‌برداری خاک از عمق صفر تا 40 سانتی‌متری در 70 نقطه مشاهداتی از یک باغ چای و نمونه‌برداری از برگ سبز چای در پلاتی به وسعت 4 متر مربع به مرکزیت محل‌های نمونه‌برداری خاک انجام شد. ویژگی‌های فیزیکی و شیمیایی خاک و عملکرد چای بر اساس روش‌های استاندارد تعیین شدند. به منظور روشن شدن اثر تجمعی ویژ‌گی‌های فیزیکوشیمیایی خاک بر عملکرد چای، نواحی مدیریتی تعیین شدند. پهنه‌بندی متغیرهای مورد مطالعه با استفاده از روش کریجینگ معمولی صورت گرفت. نتایج نشان داد که pH کمترین (1/5 درصد) و پتاسیم قابل استفاده خاک بیشترین (2/37 درصد) ضریب تغییرات را دارند. پس از برازش مدل‌های مناسب بر تغییرنما‌ها، وابستگی مکانی متوسط و قوی برای تمامی ویژگی‌های مورد بررسی به‌دست آمد. بر اساس نتایج ضرایب همبستگی، عملکرد چای با درصد کربن آلی و پتاسیم قابل استفاده خاک همبستگی مثبت (به‌ترتیب 53/0 و 37/0) و با pH خاک همبستگی منفی (45/0-) نشان داد. شباهت پراکنش مکانی عملکرد چای با الگوی توزیع مکانی pH، کربن آلی و پتاسیم قابل استفاده خاک، بیانگر همبستگی مکانی این ویژگی‌ها با عملکرد چای در منطقه می‌باشد. نتایج فوق نشان‌دهنده تأثیر قابل توجه ویژگی‌های خاکی به ویژه pH، کربن آلی و پتاسیم قابل استفاده خاک بر عملکرد چای می‌باشد. پهنه‌بندی منطقه مطالعاتی بر اساس اثرات تجمعی تغییرات مکانی ویژگی‌های خاک به سه ناحیه مدیریتی، توانست روند تغییرات مکانی عملکرد در سطح منطقه را توجیه کند. بنابراین، پهنه‌بندی تغییرات مکانی ویژگی‌های خاک در باغات چای، می‌تواند در شناسایی منابع اصلی تغییرپذیری عملکرد محصول و تعیین نواحی مدیریتی به منظور دستیابی به اصول کشاورزی پایدار و دقیق به‌کار گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial variation of some soil properties and their relationship to tea yield in Fouman region, Guilan

نویسندگان [English]

  • Kasra Samiei 2
  • Mohsen Zavvareh 3
  • Hasan Ramezanpour 4
2 Graduate Msc Student, Dept. of Soil Science, University of Guilan
3 Dept. of Agronomy and Plant Breeding, University of Guilan
4 2Associate Professor, Dept. of Soil Science, University of Guilan

کلیدواژه‌ها [English]

  • Management zones
  • Soil variability
  • Spatial distribution
  • Sustainable management
Afshar H., Salehi M.H., Mohammadi J. and Mehnatkesh A. 2009. Spatial variability of soil properties and irrigated wheat yield in a quantitative suitability map, a case study: Shahr-e-Kian area, Chaharmahalva- Bakhtiari province. Journal of Water and Soil, 23(1): 161-172. (In Persian)

Ayoubi Sh., Mohammad Zamani S. and Khormali F. 2010. Wheat yield prediction through soil properties using principle component analysis. Iranian Journal of Soil and Water Research, 49(1): 51-57. (In Persian)

Blake G.R. and Hartge K.H. 1986. Bulk density. In: Page A.L., Miller R.H. and Keeney D.R. (Eds.), Methods of Soil Analysis-Part 2. American Society of Agronomy, Madison, pp. 363-365.

Bogunovic I., Mesic M., Zgorelec Z., Jurisic A. and Bilandzija D. 2014. Spatial variation of soil nutrients on sandy-loam soil. Soil and Tillage Research, 144: 174–183.

Bouma J. and Pinke P.A. 1993. Origin and nature of soil resource variability. In: Robert P.C., Rust R.H. and Larson W.E. (Eds.), Soil Specific Crop Management. ASA, CSSA, SSSA, Madison, WI, pp. 3-14.

Cambardella C.A., Moorman T.B., Novak J.M., Parkin T.B., Karlen D.L., Turco R.F. and Konopka A.E. 1994. Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58: 1501–1511.

Cambule A.H., Rossiter D.G., Stoorvogel J.J. and Smaling E.M.A. 2014. Soil organic carbon stocks in the Limpopo National Park, Mozambique: amount, spatial distribution and uncertainty. Geoderma, 213: 46–56.

Davatgar N., Neishabouri M.R. and Sepaskhah A.R. 2012. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma, 173-174: 111–118.

De Costa W.A.J.M. and Chandrapala A.G. 2005. Tree-crop interactions in hedgerow intercropping with different tree species and tea in Sri Lanka: 2. Soil and plant nutrients. Agroforestry Systems, 63(3): 211-218.

Do N.Q. and Le T.K. 2000. Tea: Production-Processing-Marketing. Agricultural Publishing House, Hanoi, pp. 53-129. (In Vietnamese)

Dutta R. 2011. A sapatio-tempotal analysis of tea productivity and quality in north east India. Ph.D. Thesis, University of Twente, Netherlands, 158 P.

Dutta R., Stein A., Smaling E.M.A., Bhagat R.M. and Hazarika M. 2010. Effects of plant age and environmental and management factors on tea yield in northeast India. Agronomy Journal, 102 (4): 1290-1301.

Fraisse C.W., Sudduth K.A. and Kitchen N.R. 2001. Delineation of site-specific management zones by unsupervised classification of topographic attributes and soil electrical conductivity. Transactions of the ASAE, 44(1): 155–166

Fraisse C.W., Sudduth K.A., Kitchen N.R. and Fridgen J.J. 1999. Use of unsupervised for clustering algorithms for delineating within field management zones. In: ASAE paper No. 993043. International Meeting. July 18-21. Toronto, Ontario, Canada.

Fu W.J., Tunney H. and Zhang C.S. 2010. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application. Soil Tillage Research, 106: 185–193.

Gee G.W. and Bauder J.W. 1986. Particle size analysis. In: Klute A. (Ed.), Methods of Soil Analysis- Part 1. Physical and mineralogical methods. 2nd edition. American Society of Agronomy, Madison, pp. 383-411.

Gokalp Z., Basaran M., Ozun O. and Serin Y. 2010. Spatial analysis of some physical soil properties in a saline and alkaline grassland soil of Kayseri, Turkey. African Journal of Agricultural Research, 5: 1127-1137.

Goovaerts P. 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89: 1-45.

Iori P., Silva R.P., Ajayi A.E., Silva F.A.M., Junior M.S.D. and Souza Z.M. 2014 What drives decline productivity in ageing tea plantation- soil physical properties or soil nutrient status? Agricultural Science, 2(1): 22-36.

Jiang H.L., Liu G.S., Liu S.D., Li E.H., Wang R., Yang Y.F. and Hu H.C. 2012. Delineation of site-specific management zones based on soil properties for a hillside field in central China. Archives of Agronomy and Soil Science, 58(10): 1075-1090.

Johnson R.M., Downer R.J., Bradow M., Bauer P.J. and Sadler E.J. 2002. Variability in cotton fiber yield, fiber quality, and soil properties in a southeastern coastal plain. Agronomy Journal, 94(6): 1305-1316.

Kamau D.M. 2007. Confounding factors affecting the growth and production of ageing tea agro-ecosystems: a review. Tea, 28 (1/2): 26-40.

Khormali F., Ayoubi S., Kananro Foomani F. and Fatemi A. 2012. Tea yield and soil properties as affected by slope position and aspect in Lahijan area, Iran. International Journal of Plant Production, 1(1): 99-111.

Kiyani M., Salehi M.H., Mohammadi J. and Mohammadkhani A.R. 2016. The study of the spatial relationship of some soil properties with the quantitative, qualitative and vegetative properties of Valencia orange in Kazerun, Fars province. Journal of Water and Soil, 30(5): 1634-1645. (In Persian)

Lark R.M. and Stafford J.V. 1997. Classification as a first step in the interpretation of temporal and spatial variation of crop yield. Annals of Applied Biology, 130(1): 111-121.

Li J. 2005. The effect of plant mineral nutrition on yield and quality of green tea (Camellia sinensis L.) under field conditions. Ph.D. Thesis, Christian-Albrechts-University, Kiel, Germany, 181 P.

Liu G.S.,Wang X.Z., Zhang Z.Y., Zhang C.H. 2008. Spatial variability of soil properties in a tobacco field of central China. Soil Science, 173(9): 659–667.

Liu Z., Zhou W., Shen J., He P., Lei Q. and Liang G. 2014. A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China. Geoderma, 235: 39-47.

Liu, Z.P., Shao, M.A., Wang, Y.Q., 2013. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 197: 67-78.

Nelson D.W. and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. In: Page A.L. (Ed.), Methods of Soil Analysis- Part 2. American Society of Agronomy, Madison, pp. 539-580.

Olsen S.R. and Sommers L.E. 1982. Phosphorus. In: Page A L., Miller R.H. and Keeney D.R. (Eds.), Methods of Soil Analysis- Part 2. American Society of Agronomy, Madison, pp. 403-430.

Ping X., Liyun Y., Moucheng L. and Fei P. 2014. Soil characteristics and nutrients in different tea garden types in Fujian province, China. Journal of Resources and Ecology, 5 (4): 356-363

Ruan J., Ma L. and Shi Y., 2013. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China. Journal of Plant Nutrition and Soil Science, 176(3): 450-459.

Silva Cruz J., de Assis Ju´ nior R.N., Rocha Matias S.S. and Camacho- Tamayo J.H. 2011. Spatial variability of an Alfisol cultivated with sugarcane. Ciencia e Investigación Agraria, 38(1): 155-164. 

Sitienei K., Home P.G., Kamau D.M. and Wanyoko J.K. 2013. Nitrogen and potassium dynamics in tea cultivation as influenced by fertilizer type and application rates. American Journal of Plant Sciences, 4: 59-65.

Tesfahunegn G.B., Tamene L. and Vlek P.L.G. 2011. Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil Tillage Research, 117: 124–139.

Thomas G.W. 1982. Exchangeable cations. In: Page A L., Miller R.H. and Keeney D.R. (Eds.), Methods of Soil Analysis- Part 2. American Society of Agronomy, Madison, pp. 159-165.

Tola E., Al-Gaad, K.A., Madugundu R., Zeyada A.M., Kayad A.G. and Biradar C.M. 2017. Characterization of spatial variability of soil physicochemical properties and its impact on Rhodes grass productivity. Saudi journal of biological sciences, 24(2): 421-429.

Trangmar B.B., Yost R.S. and Uehara G. 1985. Application of geostatistics to spatial studies of soil properties. Advances in agronomy, 38: 45-94.

Tripathi R., Nayak A.K., Shahid M., Lal B., Gautam P., Raja R. and Sahoo R.N. 2015. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena, 133: 128-136.

Vasu D., Singh S.K., Sahu N., Tiwary P., Chandran P., Duraisami V.P., Ramamurthy V., Lalitha M. and Kalaiselvi B. 2017. Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management. Soil and Tillage Research, 169: 25-34.

Virgilio N.D., Monti A. and Venturi G. 2007. Spatial variability of switchgrass (Panicum virgatum L.) yield as related to soil parameters in a small field. Field crops research, 101: 232–239.

Wang H., Xu R.K., Wang N. and Li X.H. 2010. Soil acidification of Alfisols as influenced by tea cultivation in Eastern China. Pedosphere, 20 (6): 799–806.

Webster R. and Oliver M.A. 2001. Geostatistics for environmental scientists. John Wiley and Sons, Ltd., Chichester, UK, 271 p.

Weindorf D.C. and Zhu Y. 2010. Spatial variability of soil properties at Capulin Volcano, New Mexico, USA: Implications for sampling strategy. Pedosphere, 20: 185–197.

Wibawa W.D., Duduzile L.D., Swenson L.J., Hopkins D.G. and Dahnke W.C. 1993. Variable fertilizer application based on yield goal, soil fertility, and soil map unit. Journal of Production Agriculture, 6(2): 255-261.

Yemefack M., Rossiter D.G. and Njomana R. 2005. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma, 125: 117-143.

Zhang X.Y., Sui Y.Y., Zhang X.D., Meng K. and Herbert S.J., 2007. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17 (1): 19–29.

Zhu Q. and Lin H.S. 2010. Comparing ordinary kriging and regression kriging for soil properties in contrasting landscapes. Pedosphere, 20: 594–606.