عوامل مؤثر بر توزیع شکل‌های پتاسیم در برخی خاک‌های آهکی استان کهگیلویه و بویراحمد

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی داراب

2 دانشگاه یاسوج بخش علوم خاک

3 دانشگاه شیراز دانشکده کشاورزی و منابع طبیعی داراب بخش علوم خاک

چکیده

عوامل متعددی می‌توانند بر توزیع شکل‌های پتاسیم در خاک‌های آهکی موثر باشند. بدین منظور، تعداد 70 نمونه سطحی (0-20 سانتی­متر) و زیرسطحی (20-40 سانتی­متر) از خاک‌های استان کهگیلویه و بویراحمد انتخاب شد. ویژگی‌های فیزیکی، شیمیایی و کانی‌شناسی خاک­ها و شکل‌های مختلف پتاسیم آنها شامل محلول، تبادلی، غیرتبادلی و ساختمانی اندازه‌گیری شد. خاک‌های مورد مطالعه در رژیم‌های رطوبتی زریک و یوستیک و رژیم‌های حرارتی مزیک، ترمیک و هایپرترمیک تکامل یافته بودند. خاک‌ها دارای کانی‌های ایلیت، اسمکتیت، کلریت و پالیگورسکیت و مقدار کمی ورمیکولیت، کائولینیت و کوارتز بودند. در مناطق مرطوب‌تر، کانی­های عمده خاک اسمکتیت و ایلیت و در مناطق خشک‌تر پالیگورسکیت بود. مقادیر پتاسیم محلول، تبادلی، غیرتبادلی و ساختمانی در خاک‌های مورد مطالعه به‌ترتیب از 2/1 تا 1/12، 111 تا 521، 153 تا 1705 و 4584 تا 10379 میلی‌گرم بر کیلوگرم در خاک‌های سطحی و از 2/0 تا 5، 25 تا 403، 72 تا 1016 و 3227 تا 9541 میلی‌گرم بر کیلوگرم در خاک‌های زیرسطحی متغیر بود. مقدار پتاسیم تبادلی، غیرتبادلی، ساختمانی و کل ارتباط مثبت و معنی‌داری با مقدار رس و ظرفیت تبادل کاتیونی خاک و ارتباط منفی و معنی‌داری با مقدار کربنات کلسیم داشتند. شکل‌های مختلف پتاسیم (به‌جز شکل محلول) نیز با یکدیگر ارتباط مثبت و معنی‌داری (ضریب همبستگی از 48/0 تا 99/0) داشتند که این امر نشان از تعادل بین شکل‌های مختلف پتاسیم دارد. مطالعات کانی‌شناسی نشان داد که مقدار پتاسیم تبادلی در خاک‌های مورد مطالعه با اسمکتیت و مقدار پتاسیم غیرتبادلی با ایلیت ارتباط دارند، در حالی که مقدار پتاسیم ساختمانی و کل در خاک‌های دارای اسمکتیت و ایلیت بالاتر، به‌طور معنی‌داری بیشتر از سایر خاک‌ها بود. با این حال نیاز به مطالعات بیشتر در زمینه کانی‌شناسی بخش شن و سیلت خاک‌های مورد مطالعه و بررسی ارتباط آن­ها با وضعیت پتاسیم خاک وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Factors affecting potassium pools distribution in some calcareous soils of Kohgilouye and Boyerahmad province

نویسندگان [English]

  • Hamid Reza Owliaie 2
  • Hamid Reza Boostani 3
2 Yasouj University
3 Shiraz University
چکیده [English]

Different factors may affect potassium (K) content in calcareous soils. Potassium forms distribution as a function of various soil physicochemical properties was examined on seventy surface (0-20 cm) and subsurface (20-40 cm) soil samples of Kohgilouye and Boyerahmad province, southwest of Iran. Soil physical, chemical and mineralogical properties were determined according to standard methods. The soil was classified in Xeric and Ustic moisture regimes and Mexic, Termic, and Hyperthermic thermal regimes. As the result, the common clay minerals associations were found to be illite, smectite, chlorite and palygorskite with less content of vermiculite, kaolinite and quartz. Smectite, illite, and palygorskite were the main clay minerals occurring in humid and arid regions respectively. Soil soluble, exchangeable, non-exchangeable and structural K concentrations ranged from 1.2-12.1, 111-521, 153-1705 and 4584-10379 mg kg-1 at the surface and 0.2-5.0, 25-403, 72-1016 and 3227-9541 mg kg-1 at the subsurface soil samples respectively. Exchangeable, non-exchangeable, structural and total K concentrations positively correlated with soil clay content and cation exchange capacity (CEC), however negatively significant correlation was obtained with calcium carbonate content. Different forms of K (except soluble K) had positive and significant relationships with each other (r of 0.48-0.99) and this indicated the equilibration among K forms. Mineralogical studies indicated the positively influence of clay minerals, especially illite and smectite, on exchangeable and nonexchangeable soil K. While the structural and total K contents most affected by smectite and illitic clay minerals. Future studies are required about the mineralogy of soil sand and silt fractions and their influence on soil K status.

کلیدواژه‌ها [English]

  • Calcium carbonate
  • Climate
  • Exchangeable K
  • smectite
Balali M.R., and Malakouti M.J. 1998. Study of exchangeable K changes in agriculture soils of Iran. Soil and Water, 12(3): 59–70. (In Persian)

Banaei M.H. 1998. Soil Moisture and Temperature Regime Map of Iran. Soil and Water Research Institute. Ministry of Agriculture, Iran, 300p.

Beringer H. 1985. Adequacy of soil testing for predicting fertilizer requirements. Plant and Soil, 83: 21–37.

Chapman H.D. 1965. Cation exchange capacity. In: Black C.A. (Ed.), Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison, Wisconsin, pp. 891-901.

Ganeshamurthy A.N. 1983. An estimate of the uptake of subsurface soil potassium by crops in two long-term experiments. Journal of Agricultural Science Cambridge, 101: 495-497.

Havlin J., Beaton J., Tisdale S., and Nelson W. 1999. Soil Fertility and Fertilizers. Ed. Prentice Hall, New Jersey, 503p.

Hosseinifard S.J., Khademi H., and Kalbasi M. 2010. Different forms of soil potassium as affected by the age of pistachio (Pistacia vera L.) trees in Rafsanjan, Iran. Geoderma, 155(3-4): 289–297.

Igwe C.A., Zarei M., and Stahr K. 2008. Factors affecting potassium status of flood plain soils, eastern Nigeria. Archives of Agronomy and Soil Science, 54(3): 309-319.

Jackson M.L. 1975. Soil Chemical Analysis: Advanced Course. Department of Soils, College of Agriculture, University of Wisconsin, Madison, Wisconsin, 930p.

Khormali F., and Abtahi A. 2003. Origin and distribution of clay minerals in calcareous arid and semiarid soils of Fars province, southern Iran. Clay Minerals, 38: 511–527.

Kuhlmann H. 1990. Importance of the subsoil for the K nutrition of crops. Plant and Soil, 127: 129–136.

Mehra O.P., and Jackson M.L. 1960. Iron oxide removal from soils and clays by a dithionate citrate system with sodium bicarbonate. Clay Minerals, 7: 317-327.

Mengel K., and Rahmatullah H.D. 1998. Release of potassium from the silt and sand fraction of Loess-derived soils. Soil Science, 163: 805–813.

Munn D.A., Wilding L.P., and McLean E.O. 1976. Potassium release from sand, silt, and clay soil separates. Soil Science Society of America Journal, 40: 364–366.

Nabiollahy K., Khormali F., Bazargan K., and Ayoubi S. 2006. Forms of K as a function of clay mineralogy and soil development. Clay Minerals, 41: 739-749.

Najafi-Ghiri M., and Abtahi A. 2013. Potassium fixation in soil size fractions of arid soils. Soil and Water Research, 8(2): 49-55.

Najafi-Ghiri M., and Jaberi H.R. 2013. Effect of soil minerals on potassium release from soil fractions by different extractants. Arid land research and management, 27(2): 111-127.

Najafi-Ghiri M., Abtahi A., Owliaie H., Hashemi S.S., and Koohkan H. 2011. Factors affecting potassium pools distribution in calcareous soils of southern Iran. Arid land research and management, 25(4): 313-327.

Natarajan S., and Renukadevi A. 2003. Vertical distribution of forms of potassium in major soil series of Tamil Nadu. Acta Agronomica Hungarica, 51(3): 339-346.

Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. In: Page A.L. (Ed.), Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison, Wisconsin, pp. 539-579.

Owliaie H.R., Abtahi A., and Heck R.J. 2006. Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials, on a transect, southwestern Iran. Geoderma, 134: 62-81.

Padol V.R., and Mahajan S.B. 2003. Status and release behavior of potassium in some swell-shrink soils of Vidarbha, Maharashtra. Journal of Maharashtra Agricultural Universities, 28(1): 3-7

Pratt P.F. 1965. Potassium. In: Black C.A. (Ed.), Methods of soil analysis: Part 2. Chemical and microbiological properties. Madison (WI): American Society of Agronomy, pp. 1022–1030.

Rowell D.L. 1994. Soil Science: Methods and applications. Longman Scientific and Technical.

Salinity Laboratory Staff. 1954. Diagnosis and Improvement of Saline and Alkali Soils. Handbook No. 60, United States Department of Agriculture, Washington, D.C, 160p.

Sharma B.D., Mukhopadhyay S.S., and Sawhney J.S. 2006. Distribution of potassium fractions in relation to landforms in a Himalayan catena. Archives of Agronomy and Soil Science, 52(4): 469–476.

Sharpley A.N. 1989. Relationship between potassium forms and mineralogy. Soil Science Society of American Journal, 52: 1023–1028.

Sinha A.K., and Biswas S. 2003. Distribution of different forms of potassium in surface and subsurface horizons of some well-established soils of West Bengal under the order Inceptisols. Journal of Interacademicia, 7 (3): 286-291.

Sparks D.L. 2000. Bioavailability of soil potassium. In: Sumner M.E. (Ed.), Handbook of Soil Science, CRC Press, Boca Raton, FL, pp. 38-52.

Sparks D.L., and Huang P.M. 1985. Physical chemistry of soil potassium. In: Mounson R.D. (Ed.), Potassium in Agriculture. ASA, Madison, WI, pp. 201-276.

Srinivasarao S., Rupa T.R., Subba Rao A., and Bansal S.K. 2001. Subsoil potassium availability in twenty-two benchmark soil series of India. Communication in Soil Science and Plant Analysis, 32(5–6): 863–876.