اثر آلودگی سربی خاک بر غلظت سرب در گیاه و برخی صفات فیزیولوژیک در ارقام مختلف ذرت علوفه‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد علوم و مهندسی خاک پردیس کشاورزی و منابع طبیعی دانشگاه تهران

2 استاد گروه علوم و مهندسی خاک پردیس کشاورزی و منابع طبیعی دانشگاه تهران

3 استادیار گروه علوم و مهندسی خاک پردیس کشاورزی و منابع طبیعی دانشگاه تهران

چکیده

به منظور بررسی اثر آلودگی سربی خاک بر برخی صفات فیزیولوژیکی گیاه ذرت، آزمایشی به صورت فاکتوریل در قالب طرح پایه کاملا تصادفی با سه تکرار در گلخانه اجرا گردید. تیمارهای آزمایش شامل چهار سطح سرب در خاک ]صفر(شاهد)، 100 ، 200 و400 میلی‌گرم بر کیلوگرم[ و هشت رقم ذرت سینگل‌کراس260، 301، 302، 500، 604، 647، 704 و دبل‌کراس370 بود. نتایج تجزیه واریانس نشان داد که، تیمارهای سرب، اثر معنی‌داری (01/0>P) بر غلظت سرب اندام‌های گیاهی (بخش هوایی و ریشه)، شاخص پایداری غشاء و سطح برگ داشت، اما اثر معنی‌داری بر محتوی نسبی آب برگ نداشت. نتایج به دست آمده نشان داد که غلظت سرب ریشه بیشتر از اندام هوایی بود و با افزایش غلظت سرب در خاک، غلظت این عنصر در اندام‌های گیاهی (ریشه و اندام هوایی) به طور معنی‌داری افزایش یافت (01/0>P). بیشترین غلظت سرب اندام هوایی و ریشه در تیمار سرب 400 میلی‌گرم درکیلوگرم خاک رقم 704 به ترتیب با میانگین 33/54 و 11/235 میلی‌گرم درکیلوگرم، مشاهده گردید. آلودگی سربی در خاک  موجب کاهش سطح برگ و شاخص پایداری غشاء در ارقام مورد مطالعه گردید و با افزایش غلظت سرب در خاک، سطح برگ و شاخص پایداری غشاء روند کاهشی را نشان داد. بر اساس نتایج مقایسه میانگین، رقم 704 در تیمار سرب با غلظت 400 میلی‌گرم درکیلوگرم خاک با میانگین 96/56 درصد، کمترین مقدار شاخص پایداری غشاء را داشت. نتایج نشان داد که آلودگی سرب می‌تواند اثر منفی بر سطح برگ و شاخص پایداری غشاء داشته باشد. بررسی‌های بیشتر برای روشن‌تر شدن مکانیسم‌‌های مقاومت گیاه لازم و ضروری می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Soil Lead Contamination on Plant Lead Concentration and Some Physiological Characteristics of Varieties of Forage Maize

نویسندگان [English]

  • Mehdi Tafvizi 1
  • Gholamreza Savaghebi-Firoozabadi 2
  • Babak Motesharezadeh 3
1 MSc Student, Department of Soil Science Eng., University College of Agriculture & Natural Resources, University of Tehran
2 Professor, Department of Soil Science Eng, College of Agriculture & Natural Resources, University of Tehran
3 Assistant Professor, Department of Soil Science Eng., College of Agriculture & Natural Resources, University of Tehran
چکیده [English]

To investigate the effect of lead on some physiological traits of maize (Zea mays L.) a factorial experiment in randomized completely design was carried out in the greenhouse. Treatments contained four levels Soil of Pb: [0 (control), 100, 200 400 mg/kg soil] and eight varieties of maize: (SC260, SC301, SC302, SC500, SC604, SC647, SC704 and DC370). The results showed the effect of Pb on shoot and root Pb concentrations, membrane stability index and leaf area were significant at the 1 % level. However, there was not any significant effect on leaf relative water content. The results showed that Pb concentration in the root was higher than shoot and the accumulation of lead in shoot and root increased significantly (P<0.01) with increasing Pb levels. The highest Pb concentration of shoot and root was observed in SC704 cultivar with an average of 54.33 and 235.11 mg kg-1 DW respectively at the 400 ppm level of Pb. The soil Pb contamination decreased leaf area and membrane stability index in cultivars and whit increasing Pb concentration in soil, leaf area and membrane stability index decreased. According to mean compares, the lowest membrane stability index showed in 704 cultivar with a mean of % 56.96 at the 400 ppm level of Pb. The results indicated that Pb contamination had a negative effect on leaf area and membrane stability index. More work is necessary to elucidate the mechanisms of tolerance in this plant.

کلیدواژه‌ها [English]

  • Corn
  • lead
  • membrane stability index
  • leaf relative water content
  • leaf area
References

Ahmed AB and Bouhadjera K. 2010. Assessment of metals accumulated in Durum wheat (Triticum durum Desf.), pepper (Capsicum annuum) and agricultural soils. Afr. J. Agri. Res. 5(20): 2795-2800.

Akinci IE, Akinci S And Yilmaz K. 2010. Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. Afr. J. Agri. Res, 5 (6), 416-423.

Arias JA, Peralta-Videa JR, Ellzey JT, Ren M, Viveros MN, and Gardea-Torresdey JL. 2010. Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ. and Exp. Bot. 68(2):139–148.

Azmat R, Haider S And Riaz M. 2009. An inverse relation between Pb2+ and Ca2+ ion accumulation in Phaseolus mungo and Lens culinaris under Pb stress. Pakistan J. Bot. 41(5): 2289-2295.

Azooz MM, Youssef MM and Al-Omair MA. 2011. Comparative aluation of zinc and lead their synergistic effects on growth and some physiologica responses of Hassawi okra (Hibiscuse esculentus) seedling. Am. J. Plant Physiol. ISSN 1557-4539 /' DOI: 10.3923/ajpp.

Bingham F, Sposito and Strong G. 1984. The effect of chloride on the availability of cadmium. J. Environ. Qual. 13:71-74.

Bouyoucos CJ. 1962. Hydrometer method improved for making particle size analysis of soil. Agron. J. 54: 464-465p.

Bremner JM. 1996. Nitrogen-total. P. 1085-1122. InSparks, D.L. et al., Method of soil analysis. Published by: Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA.

Brunet J, Varrault G, Zuily-Fodil Y and Repellin A. 2009. Accumulation of lead in the roots of grass pea (Lathyrus sativus L.) plants triggers systemic variation in gene expression in the shoots. Chemospher, 77(8): 1113–1120.

Carter MR and Gregorich EG. 2008. Soil sampling and methods of analysis. 2nd Ed. Can. Soc. Soil Sci.

Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A and Terzi H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ. Exp. Bot. 67(3): 467–473.

Elibieta W and  Miroslawa C. 2005. Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max L.) Merr.). Soil Sci. Plant Nut, 51(2): 203–212.

Gonzalez L and Gonzalez-Vilar M. 2001. Determination of relative water content. In: Roger MJR (Ed) Handbook of plant ecophysiology techniques, Kluwer Academic Publishers, Dordrecht, Nederlands, 207-212 pp.

Hechmi  N, Ben Aissa N, Abdennaceur H and  Jedidi N. 2013. Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium. Int. J. Phytorem, 15: 703–713.

Hemke PH and Spark DL. 1996. Potassium. 551-574. InSparks, D.L. et al., Method of Soil Analysis. Published by: Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA.

Islam E, Yang  Xli, Liu T, Jin D and Meng XF.2007. Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater.147: 806–816.

Islam E, Liu D, Li TQ, Yang XE, Jin  XF, Mahmooda Q, Tian S and Li J. 2008. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J. Hazard. Mater. 154: 914-920.

Jiang W and Liu D. 2010. Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biology, 10: 40–40.

Kadukova J and Kalogerakis N. 2007. Lead accumulation from non-saline and saline environment by Tamarix smyrnesis Bunge. Eur. J. Soil Biol. 43: 216-223.

Kastori R, Plesnicar M, Sakac Z, Pankovic D and Arsenijevic-Maksimovic, I. 1998. Effect of lead excess on sunflower growth and photosynthesis. J. Plant Nut. 21: 75–85.

Kopittke PM, Asher CJ, Kopittke RA And Menzies NW. 2007. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ. Pollut. 150: 280-287.

Kuo S. 1996. Phosphorus. P. 869-920. InSparks DL. et al., Method of soil analysis. Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA.

Lindsay WL. and NorvellWA. 1978. Development of DTPA soil test for zinc, iron, manganese and copper. Soil. Sci. Soc. Am. J. 42: 421-428.

Liu D, Li TQ, Yang XE, Islam E, Jin XF And Mahmood Q. 2008. Effect of Pb on Leaf Antioxidant Enzyme Activities and Ultrastructure of the Two Ecotypes of Sedum alfredii Hance. Russ. J. Plant Physiol. 55: 68-76.

Maestri E, Marmiroli M, Visioli G, Marmiroli N. 2010. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ. Exp. Bot. 68(1): 1–13.

Małecka A, Piechalak A, Morkunas I and Tomaszewska B. 2008. Accumulation of lead in root cells of Pisum sativum. Acta Physiol. Plant, 30(5): 629–637.

Malkowski E, Kita A, GalasW, KarczW and Kuperberg JM. 2002. Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul. 37(1): 69–76.

Marschner H. 1995. Mineral Nutrition of Higher Plants.2nd Ed. Academic Press., London, UK.

Meyers Der, Auchterlonie GJ, Webb RI and Wood B. 2008. Uptake and localization of lead in the root system of Brassica juncea. Environ. Pollut. 1:53(2): 323–332.

Mojiri A. 2011. The potential of corn (Zea mays L.) for phytoremediation of soil contaminated with cadmium and lead. J. Biol. Environ. Sci. 5(13): 17-22.

Nelson RE. 1982. Carbonate and gypsum. P. 181-196. In A.L. Page (Ed), Methods of soil analysis. Part 2. 2nd Ed. Chemical and microbiological properties. Agronomy monograph no.9. SSSA and ASA. Madison, WI.

Nuraky F, Rahmany H, Lorzadeh SH and Khodarahmpour Z. 2011. Effects of nicosulfuron and foramsulfuron plus aculivation in contrast conventional herbicides on growth and grain yield of maize towards sustainable agriculture in the north of Khuzestan in Iran. Int. J. Agri: Research and Review, 1: 76-79.

Patra M, Bhowmik N, Bandopadhyay B And Sharma A. 2004. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 52:199-223.

Pourrut B, Shahid M, Dumat C, Winterton P And Pinelli E. 2011. Lead Uptake, Toxicity, and Detoxification in Plants. Rev. Environ. Contam Toxicol. 213: 113-36.

Rengel Z.1992. The role of calcium in salt toxicity. Plant Cell Environ. 15: 625–632.

Rhoades JD. 1996. Electrical conductivity and total dissolved solids. P. 417-436. InSparks, D. L. et al., Method of soil analysis. Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA.

Romeiro S, Lagoa  AM, Furlani  PR, Abreu CA, Abreu  MF and Erismann NM. 2006. Lead uptake and tolerance of de Ricinus communis L. Braz. J. Plant Physiol. V.18: 483-489.

Sairam RK, Rao KV and Srivastava GC. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte. Plant Sci. 163: 1037-1046.

Seregin IV, Shpigun LK and Ivanov VB. 2004. Distribution and toxic effects of cadmium and lead on maize roots. Russ. J. Plant Physiol. 51(4): 525–533.

Seregin IV And Ivanov VB. 2001. Physiological aspects of Cadmium and Lead toxic effects on higher plants. Russ. J. Plant Physiol. 48, No. 4, pp. 523–544.

Sharma P and Dubey RS. 2005. Lead toxicity in plants. Braz. J. Plant Physiol, 17(1):35–52.

Sinha P, Dube B, Srivastava P and Chatterjee C. 2006. Alteration in uptake and translocation of essential nutrients in cabbage by excess lead. Chemosphere, 65(4):651–656.

Sudhakar C, Lakshmi A and Giridarakumar S. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus Alba L.) under NaCl salinity. Plant Sci. 161: 613-619.

Sumner ME and Milker WP. 1996. Cation exchange capacity and exchange coefficients. P. 1201-1230. InSparks, D.L. et al., Method of soil analysis. Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA.

Thomas GW.1996. Soil pH and soil acidity. P. 475-490. InSparks, D.L. et al., Method of Soil Analysis. Soil Science Society of America, Inc. American Society of Agronomy, Inc. Madison, Wisconsin, USA.

White Pj and Broadley MR. 2003. Calcium in plants, Ann. Bot. 92: 487-51.

Wuana R.A and Okieimen F.E. 2010. Phytoremediation potential of Maize (Zea mays L.). A Review. Afr. J. Gen. Agric. V: 6, No. 4.

Yan-dej HE. Zhen Li And Xiao-e Y. 2007. Role of soil rhizobacteria in phytoremediation. J. Zhejiang U. Sci. B ISSN 1673-1581 (Print); ISSN 1862-1783 (Online)

Zhao, Ye X and Zheng J. 2011. Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. Afri. J. Biotechnol. 10: 116-124.