اثر کلات EDTA بر جذب سرب و کادمیم توسط کلزا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 موسسه، خاک و آب و فیزیک

2 عضو هیأت علمی

3 محقق

چکیده

سرب و کادمیم از جمله عناصر سنگینی هستند که از منابع گوناگون به آب، خاک، گیاه و نهایتاً به زنجیر‌ه‌ غذایی انسان راه می-یابند و آسیب‌هایی جدی به سلامتی انسان وارد می‌کنند. تاکنون روش‌های مختلفی برای پالایش خاک‌های آلوده بیان شده است. گیاه‌پالائی یکی از روش‌های نویدبخش در این زمینه است. هدف از گیاه‌پالایی برداشت و استخراج حداکثری آلاینده از محیط خاک می‌باشد. استفاده از کلات‌ها ازجمله شیوه‌های مؤثر در فراهمی زیستی عناصر سنگین است. لذا، در این پژوهش پیامدهای اتیلن دی‌آمین تترا استیک اسید (EDTA) به‌عنوان یک کلات‌کننده شیمیایی در افزایش جذب سرب و کادمیم توسط کلزا (رقم اوکاپی) بررسی گردید. این پژوهش در شرایط گلخانه‌ای به‌صورت آزمایش فاکتوریل و در قالب طرح پایه کاملاً تصادفی با سه تکرار انجام شد. فاکتورها شامل: 1- کاربرد EDTA در دو سطح (صفر و 7/2 میلی‌مول در کیلوگرم خاک)، 2- عنصر سرب در سه سطح (صفر ، 150 و 500 میلی‌گرم درکیلوگرم خاک) و 3- عنصر کادمیم در سه سطح (صفر، 3 و 10 میلی‌گرم در کیلوگرم خاک) بودند. بدین‌‌منظور، یک نمونه خاک غیرآلوده انتخاب و با غلظت‌های مختلف سرب و کادمیم آلوده شد. سپس بذر کلزا کشت گردید و در پایان دوره رشد (هفت ماه پس از کشت) غلظت سرب و کادمیم در گیاه (کاه و کلش و دانه) و خاک اندازه-گیری شد. نتایج نشان داد که کاربرد EDTA حلالیت سرب و کادمیم را در محلول خاک افزوده و منجر‌به افزایش جذب سرب در کاه و کلش (6/25 برابر) و دانه کلزا (2/11 برابر) و کادمیم در کاه و کلش (12 درصد) گردید. همچنین بررسی غلظت سرب و کادمیم در کلزا نشان داد که در کاه و کلش در تیمار‌های آلوده، غلظت کادمیم (1/23- 35/7 میلی‌گرم در کیلوگرم) در هر دو سطح EDTA و غلظت سرب (48/275-47/106 میلی‌گرم در کیلوگرم) تنها در حضور EDTA در حد سمیت مشاهده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of EDTA on Uptake of Lead and Cadmium by Canola

چکیده [English]

Lead (Pb) and cadmium (Cd) are among heavy metals which enter water, soil, plants and ultimately the human and animals food chain from variouse resources and can cause serious damages. Several methods has been suggested for remediation of contaminated soils. Phytoremediation is a promising technology for this purpose. Harvesting and maximum extraction of contaminants from soil environment is the purpose of phytoremediation. Use of chelates, is one of the effective approaches for increasing the bioavailability of heavy metals. Therefore, In this study, the effects of Ethylene Diamine Tetra-acetic Acid (EDTA) as a chelating agent on increased absorption of Pb and Cd by Canola (Okapi) were studied. A pot experiment was conducted in the greenhouse as a factorial and completely randomized design with three replication. Factors included of : 1- EDTA Application in two levels (0 and 2.7 mmolkg-1 soil), 2- Pb at three levels ( 0, 150 and 500 mgkg-1 soil) and 3- Cd in three levels (0, 3 and 10 mgkg-1 soil). Consequently, a non- contaminated soil was selected and contaminated with different amounts of Pb and Cd. Then, canola seeds were planted and after harvest, Pb and Cd concentration in plants (grain and straw) and soil was measured. The results showed that EDTA Application was able to increase Pb and Cd solubility in soil solution, resulting in increased absorption of Pb in straw (25.6 times) and grain (11.2 times) and Cd in straw (12 %). Also studying the Pb and Cd concentration in canola showed that in canola straw in contaminated treatments, Cd concentration (7.35-23.1 mgkg-1) in both levels of EDTA and Pb concentration (106.47-275.48 mgkg-1) only in treatment with EDTA were observed in toxicity limit.

کلیدواژه‌ها [English]

  • Heavy metals
  • Grain
  • Straw
  • phytoremediation
References

Adiloglu S., Turgut Saglam M., Adiloglu A., and Sume A. 2016. Phytoremediation of nickel (Ni) from agricultural soils using canola (Brassica napus L.). Journal of Desalination and Water Treatment, 57(6): 2383-2388. 

Ali Ehyaee M., and Behbahanizadeh A. 1993. Methods of Soil Chemical Analysis, Technical Bulletin, Soil and Water Research Institute, Iran, No. 983. (In Persian)

Aria P., and Mirkhani R. 2005. Methods of Soil Physical Analysis, Technical Bulletin, Soil and Water Research Institute, IranNo:479. (In Persian)

Cho Y., Bolick G.A., and Butcher D.J. 2009. Phytoremediation of lead with green onions (Allium fistulosum) and uptake of arsenic compounds by moonlight ferns (Pteris cretica cv Majii). Microchemical Journal, 91(1): 6-8.

Cui Y., Wang Q., Dong Y., Li H., and Christie P. 2004. Enhanced uptake of soil Pb and Zn by Indian mustard and winter wheat following combined soil application of elemental sulphur and EDTA. Plant and Soil, 261: 181–188.

Doumett S., Lamperi L., checchini L., Azzarello E., Mugnai S., Mancuso S., Petruzzelli G., and Bubba M.D. 2008. Heavy metal distribution between contaminated soil and paulownia tomentosa,in a pilot-scale assisted phytoremediation study: Influence of different complexing agents. Chemosphere, 72: 1481-1490.

Dushenkov S., Kapulnik Y., Blaylock M., Sorochinsky B., Raskin I., and Ensley B. 1997. Phytoremediation: a novel approach to an old problem. Global Environmental Biotechnology, 563–572.

Ebrahimi M., and Shahsavand F. 2014. EDTA enhanced phytoextraction capacity of Scirpus maritimus L. grown on Pb-Cr contaminated soil and associated potential leaching risks. International Journal of Scientific Research in Environmental Sciences, 2(10): 379-388.

Ebrahimi M., Piri Sahragard H., and Miri E. 2015. Effect of EDTA Application on lead and zinc uptake and germination of Thlaspi caerulescens L. in a contaminated soil. Ecopersia, 3(4): 1213-1224.

Emami A. 1976. Methods of Plant Analysis, Technical Bulletin, Soil and Water Research Institute, Iran,No:982. (In Persian)

Evangelou M.W.H., Ebel M., and Schaeffer A. 2007. Chelate assisted phytoextraction of heavy metals from soil effect, mechanism, toxicity, and fate of chelating agents. Chemosphere, 68: 989-1003.

Garbisu C., Hernandez-Allica J., Barrutia O., Alkorta I., and Becerril, J.M. 2002. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Reviews on Environmental Health, 17 (3): 173–188.

Gee G.W., and Or D. 2002. Particle-size analysis. In: Methods of Soil Analysis. Part-4. Physical Methods. SSSA Book Series, Madison, pp. 255-293.

Ghasemi-Fasaei R. 2012. Effects of EDTA and phosphorus levels on lead phytoremediation by maize. International Journal of Agriculture and Crop Sciences, 4-23: 1786-1790.

Glick B.R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21(5): 383-393.

Gonsior S.J., Sorci J.J., Zoellner M.J., and Landenberger B.D. 1997. The effects of EDTA on metal solubilization in river sediment/water systems. Journal of Environmental Quality, 26: 957-966.

Guo G.L., and  Zhou Q.X. 2003. Advances of research on combined pollution in soil plant systems. Chinese Journal of Applied Ecology, 14(5): 823–828.

Haag – Kerwer A., Schafer H.J., Heiss S., Walter C., and Rausch T. 1999. Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. Journal of Experimental Botany, 50(341): 1827-1835.

Hong-qi W., Si-jin L., Hua L., and Zhi-hua Y. 2007. EDTA-enhanced phytoremediation of lead contaminated soil by Bidens maximowicziana. Journal of Environmental Sciences, 19: 1496-1499.

Kabata-Pendias A. 1984. Trace elements in soils and plants. CRC Press, the University of Michigan, 315p.

Liu D., Yang T., Li X., Islam E., Jin X., and Mahmood Q. 2007. Enhancement of lead uptake by hyperaccumulator plant species Sedum alfredii Hance using EDTA and IAA. Bulletin of Environmental Contamination Toxicology, 78(3-4): 280–283.

Meers E., Hopgood M., Lesage E., Vervaeke P., Tack F.M.G., and Verloo M.G. 2004. Enhanced phytoextraction: in search of EDTA alternatives. International Journal Phytoremediation, 6(2): 95–109.   

Meers E., Ruttens A., Hopgood M.J., Samson D., and Tack F.M.G. 2005. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58: 1011–1022.

Mourato M.P., Moreira I.N., Leitao I.,  Pinto F.R., Sales J.R., and  Luisa Louro Martins L.L. 2015. Effect of heavy metals in plants of the genus Brassica. International Journal of Molecular Sciences, 16: 17975-17998.

Raskin I., and Ensley B.D. 2000. Phytoremediation of Toxic Metals: Using plants to clean up the Environment. Engineering, pp. 53-70.

Ruley A.T., Sharma N.C., Sahi S.V., Singh S.R., and Sajwan K.S. 2006. Effects of lead chelators on growth, phytosynthetic activity and pb uptake in Sesbania drummondii grown in soil. Environmental pollution, 144: 11-18.

Sajwan K.S., Ornes W.H., Youngblood T.V., and Alva A.K. 1996. Uptake of soil applied cadmium, nickel and selenium by bush beans. Journal of Water, Air and Soil Pollution, 91: 209-217.

Sarsar V., Hardeep H., Selwal K.K., Tanwar R.S., Pankaj K., Tyagi P.K., and Anami Ahuja A. 2012. Indian Mustard Brassica juncea L. Mediated Phytoremediation of Lead. International Journal of Applied Biology and Pharmaceutical Technology, 3(4): 1-5.

Seth C.S., Chaturvedi P.K., and Misra V. 2008. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicology and Environmental Safety, 71: 76-85.

Shakoor M.B., Ali S., Farid M., Farooq M.A., Tauqeer H.M., Iftikhar U., Hannan F., and Bharwana S.A. 2013. Heavy metal pollution, a global problem and its remediation by chemically enhanced phytoremediation: A Review, Journal of Biodiversity and Environmental Sciences, 3(3): 12-20.

Steele M.C., and Pichtel J. 1998. Ex-situ remediation of a metals contaminated superfund soil using selective extractants. Journal of Environmental Engineering, 124(7): 639-64.

Sun,Y., Zhou Q., Xu Y., Wang L., and Liang X. 2011. The role of  EDTA on cadmium phytoextraction in a cadmiumhyperaccumulator. Rorippa globosa. Journal of Environmental Chemistry and Ecotoxicology, 3(3): 45-51.

Turan M., and Esringu A. 2007. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environment, 53: 7–15.

Wu L.H., Luo Y.M., Christie P., and Wong M.H. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere, 50: 819–822.

Wu L.H., Luo Y.M., Xing X.R., and Christie P. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture, Ecosystems, Environment, 102: 307–318.

Yang J.Y., Yang X.E., He Z.L., Li T.Q., Shentu J.L., and Stoffella P.J. 2006. Effects of pH, organic acids, and inorganic ions on lead desorption from soils. Environmental Pollution, 143(1): 9–15.

Zaier H., Ghnaya T., Ben R.K., Lakhdar A., Rejeb S., and Jemal F. 2010. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresource Technology, 101: 3978–3983.

Zhao Z., , Nan Z., Wang Z.W., Yang Y.M., and Shimizu M. 2014. Interaction between Cd and Pb in the soil-plant system: a case study of an arid oasis soil-cole system. Journal  of Arid Land , 6(1): 59−68.