پیش بینی تغییرات مکانی شاخص فرسایش‌پذیری خاک با استفاده ‌از تکنیک نقشه‌برداری رقومی در منطقه کانی سیف شهرستان بانه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی

2 دانشگاه اردکان

3 دانشگاه کردستان

چکیده

شاخص فرسایش‌پذیری خاک یکی از پارامترهای تعیین کننده در برآورد میزان فرسایش آبی می‌باشد. بنابراین اطلاع از تغییرپذیری مکانی این پارامتر کمک بسزایی در مدل‌سازی فرسایش آبی در منطقه دارد. هدف از تحقیق حاضر بررسی تغییرات مکانی شاخص فرسایش‌‌پذیری خاک (K) با ‌استفاده ‌از تکنیک نقشه‌برداری ‌رقومی خاک در منطقه کانی سیف بانه، استان کردستان می‌باشد. در‌ تحقیق حاضر بر اساس تکنیک هایپرکیوب محل ۲۱۷ نمونه در منطقه مورد مطالعه به وسعت ۴۰۰۰ هکتار انتخاب گردید و سپس نمونه‌های خاک ‌از عمق‌30-0 سانتی‌متری برداشت ‌شدند ‌و مقادیر‌ درصد ‌آهک، شن، سیلت، رس، وزن مخصوص ظاهری و ماده ‌آلی در ‌آزمایشگاه اندازه‌گیری شدند. در ابتدا با استفاده از نرم‌افزار RETC نفوذپذیری خاک تخمین زده شد و سپس، ‌از ‌طریق معادله‌ واعظی ‌(2008)،‌‌ مقدار K محاسبه ‌گردید. سپس با ‌استفاده ‌از مدل‌های خاک- سرزمین (SOLIM) و شبکه‌ عصبی مصنوعی، ‌ارتباط بین‌ داده‌های فرسایش-پذیری خاک و متغیرهای کمکی مستخرج از مدل رقومی ارتفاع و تصویر ماهواره لندست بدست آمد. ‌نتایج نشان داد که مدل خاک- سرزمین (ضریب تبیین ‌و ‌‌ریشه ‌مربعات خطای ‌72/0 و ‌00013/0) ‌دارای کارایی بالاتری نسبت به شبکه عصبی مصنوعی (ضریب تبیین ‌و ‌‌ریشه ‌مربعات خطای 67/0 و ‌00015/0) در پیش‌‌بینی شاخص فرسایش‌پذیری خاک‌ می‌باشد. نتایج نشان داد که‌ با ‌استفاده‌ از داده‌های نقطه‌ای ‌می‌توان‌ برآورد ‌نسبتاً‌ دقیقی‌ از ‌میزان ‌شاخص‌‌‌‌ فرسایش‌‌پذیری ‌خاک به صورت پیوسته ‌‌داشت. در نهایت با استفاده ‌از مدل SOLIM‌ اقدام ‌به پهنه‌بندی رقومی فرسایش‌‌‌پذیری خاک ‌در منطقه‌‌ مورد‌ مطالعه گردید. نقشه نهایی شاخص فرسایش‌پذیری خاک منطقه مورد ‌مطالعه برحسب تن در هکتار بر مگا‌ژول ‌در میلی‌متر با استفاده ‌از ‌‌مدل سولیم به ‌دست ‌آمد، ‌که مقادیر آن بین t.ha/Mj.mm 0095/0-0094/0 متغیر می‌باشند. ‌لذا پیشنهاد ‌می‌گردد در مطالعات‌‌ آینده جهت برآورد مکانی‌ شاخص‌ فرسایش پذیری خاک از سایر مدل‌های نقشه‌‌برداری رقومی‌ استفاده ‌‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Variability prediction of soil erodibility index using digital soil mapping technique in Baneh city Kanisef region

چکیده [English]

Soil erodibility (K) index is one of vital parameters in water erosion prediction. Therefore knowledge about spatial variability of this parameter (K) could efficacy help to model water erosion in area of interest. Our purpose is to predict spatial variability of soil erodibility index using digital soil mapping technique in Baneh region (Kanisef area), Kurdistan Province. In this study, based on hypercube sampling methods, 217 soil sampling sites were selected in area of 4000-ha and then samples collected from depth 0-30 cm and some soil analysis (i.e. calcium carbonates, clay, silt, sand, surface special weight and soil organic carbon) in the laboratory measured. Using RETC software soil infiltration values were obtained and then K factor calculated according to Vaezi equation (2008). The relationship between K factor and ancillary data covariates (derived from DEM and Landsat image) was obtained by land-soil models (Solim) and artificial neural network. Result showed that Solim model (R2 and RMSE 0/72 and 0/00013, respectively) have higher performance than artificial neural network (R2 and RMSE 0/67 and 0/00015, respectively) for soil erodibility index prediction. Our result also showed it is possible to map soil erodibility index continuously with reasonable accuracy. Finally digital map of K factor was prepared using Soilm model in the study area. The digital map of K factor obtained by Solim indicated ranging of soil erodibility from 0.0094 to 0.0095 ton.ha/Mj.mm. We recommend prediction of spatial variation of K factor by the other digital soil mapping techniques.

کلیدواژه‌ها [English]

  • Hypercube sampling
  • Artificial neural network (ANN)
  • Land-soil model (SOLIM)
Akramkhanov A., and Vlek P.L.G. 2012. The assessment of spatial distribution of soil salinity risk using neural network. Environmental Monitoring and Assessment, 184: 2475-2485.
Amini M., Abbaspour K.C., Khademi H., Fathianpour N., Afyuni M., and Schulin R. 2005. Neural network models to predict cation exchange capacity in arid regions of Iran. European Journal of Soil Science, 53: 748-757.
Behrens T., and Scholten T. 2007. A comparison of data-mining techniques in predictive soil mapping. In: Lagacherie, P., and McBratney, A.B., Voltz, M. (Eds.), Developments in Soil Science, 31: 353-­364.
Beven K.J. 1993. Prophecy, reality and uncertainty in distributed soil erosion modelling. Advances in Water Resources, 16: 41-51.
Bewket W., and Teferi E. 2009. Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the Chemoga watershed, Blue Nile basin, Ethiopia.­ Land Degradation & Development, 20: 609-622.
Bodaghabadi Bagheri M., Salehi, M.H., Mohammadi, J., Toomanian, N., and Esfandiarpour, I. 2011. Efficiency of digital elevation model and its attributes for soil mapping using soil-land inference model (SoLIM). Journal of water and soil, 5: 123-130. (In Persian).
Boix-Fayos C., Calvo-Cases A., Imeson A.C., Soriano-Soto M.D., Tiemessen I.R. 1998. Spatial and short-term temporal variations in runoff, soil aggregation and other soil properties along a Mediterranean climatological gradient. Catena, 33: 123-138.
Bonilla C.A., and Johnson O.I. 2012. Soil erodibility mapping and its correlation with soil properties in Central Chile. Geoderma, 189: 116-123.
Buttafuoco G., Conforti M.P.P.C., Aucelli P.P.C., Robustelli G., and Scarciglia F. 2012. Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environment Earth Science, 66: 1111–1125.
Charman P.E.V., and Murphy B.W. 2000. Soils (their properties and management). Second edition, Land and Water Conservation, Oxford.
Davatgar N. 1998. Study spatial variability of several soil properties. M.Sc. Thesis. Science Department, Faculty of Agricultural Science, University of Tabriz, 98p. (In Persian)
Ghorbani Vagheie H., and Bahrami H.A. 2005. Spatial changes of USLE and RUSLE soil erodibility index using GIS case study: North East of Lorestan Province. Proceedings of the Third National Conference of Erosion & Sediment.Tehran. Iran,9p.(In Persian)
Huete A.R. 1988. A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309.
Jianping Z. 1999. Soil erosion in Guizhou Province of China: a case study in Bijie Prefecture. Soil Use Management, 15: 68-70.
Malone B.P., McBratney A.B., Minasny B., and Laslett G.M. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma, 154: 138-152.
McBratney, A.B., Mendonça-Santos, M.L., and Minasny, B. 2003. On digital soil mapping. Geoderma, 117: 3–52.
Minasny B., ­ McBratney A.B., and Hartemink, A.E. 2010. Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma, 155: 132-139.
Minasny B., and McBratney A.B. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computer and Geosciences, 32: 1378-1388.
Mohammad J. 1998. Rain erosivity map providing for Iran using Fournier Index and Kriging method. Agricultural Science and Natural Resources Journal, 4: 35-44. (In Persian)
Munka G., Cruz G., and Caffera, R.M. 2008. Long-term variation in rainfall erosivity in Uruguay: A preliminary Fournier approach. Geomorphology Journal, 70: 257-262.
Okou, F.A.Y., Tente, B., Bachmann, Y., Sinsin, B. 2016. Regional erosion risk mapping for decision support: A case study from West Africa. Land Use Policy, 56: 27-37.
Panagos P., Meusburger K., Ballabio C., Borrelli P., and Alewell C. 2014. Soil erodibility in Europe: A high-resolution dataset based on LUCAS. Science of the Total Environment, 479: 189-200.
Quinn P.K., Beven P., Chelallier and Planchon, O. 1993. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrological processes, 33: 63–83.
Ranjani. 2008. Automated soil land inference model (SoLIM) Under Fuzzy Logic in the Kareec Basing. Ecological Modeling, 90: 123-145.
Refahi H. 1996. Water erosion and control, No. 1. University of Tehran, Pp: 70-265.
Saey T., Van Meirvenne M., Vermeersch H., Ameloot N. and Cockx L. 2009. A pedotransfer function to evaluate the soil profile textural heterogeneity using proximally sensed apparent electrical conductivity. Geoderma, 150: 389–395.
Scull P., Franklin j., Chadwick O.A., and McArthur D. 2003. Predictive soil mapping: a review. Progress in Physical Geography, 27: 171-197.
Seutloali, K.E., Dube, T. and Mutanga O. 2016. Assessing and mapping the severity of soil erosion using the 30-m Landsat multispectral satellite data in the former South African homelands of Transkei. Physics and Chemistry of the Earth, Parts A/B/C. In press.
Taghizadeh-Mehrjardi R., Nabiollahi K. and Kerry R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma, 266, 98–110.
Tomasella J., Hodnett M.G., and Rossato L. 2000. Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Science Society of America Journal, 49: 1100-1105.
Triantafilis J., and Buchanan S.M. 2010. Mapping the spatial distribution of subsurface saline material in the Darling River valley. Journal of Applied Geophysics, 70: 144–160.
Vaezi A., Sadeghi S.H., Bahrami H., Mahdian M. 2008. Modeling the USLE K-Factor for Calcareous Soils in Northwestern Iran. Geomorphology, 97: 414-423.
Webb T.H., and Lilburne L.R. 2005. Consequence of soil map unit uncertainty on environmental risk assessment. Australian Journal of Soil Research, 43: 119 – 126.
Wischmeier W.H. and Smith D.D. 1978. Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook No. 537. US Department of Agriculture, Washington,23-38.
Yuksel A., Gundogan R., and Akay A.E. 2008. Using the remote sensing and GIS technology for erosion risk mapping of Kartalkaya dam watershed Kahramanmaras, Turkey. Sensors, 8: 4851-4865.
Zhang K., Li S., Peng W., and Yu ­B. 2007. Erodibility of agricultural soils and loess plateau of China. Soil & Tillage Research, 76: 157-165.
Zhu A. 1997b. Measuring uncertainty in class assignment for natural resource maps under fuzzy logic. Photogrammetric Engineering & Remote Sensing, 63: 1195-1202.
Zhu A., Band L., Vertessy R., and Dutton B. 1997. Derivation of soil properties using a soil land inference model (SOLIM). Soil Science Society of America Journal, 61: 147-159.
Zhu A.X. 1996. A similarity model for representing soil spatial information. Geoderma, 77: 217-242.