نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیئت علمی

2 -

3 عضو هیئت علمی گروه علوم و مهندسی خاک دانشگاه زنجان

چکیده

افزایش تقاضای محصولات کشاورزی و کمبود منابع آب و خاک مناسب همراه با مشکلات تحقیقات میدانی، ضرورت استفاده از مدل‌های مناسب برای پیش‌بینی عملکرد محصولات کشاورزی را آشکار می‌سازد. این تحقیق به بررسی کارایی مدل‌های فراکاوشی شبکه‌های عصبی مصنوعی، شبکه تطبیقی عصبی فازی و روش ترکیبی شبکه‌های عصبی- فازی تطبیقی و الگوریتم بهینه‌سازی ازدحام ذرات دربرآورد عملکرد گندم به کمک ویژگی‌های خاک و اراضی پرداخته ‌است. منطقه مورد مطالعه در شهرستان هریس (استان آذربایجان شرقی) قرار داشته و رژیم حرارتی و رطوبتی به ترتیب مزیک و اریدیک هم مرز با زریک می‌باشد. جهت نیل به اهداف در تحقیق حاضر 80 خاکرخ در مزارع گندم منطقه حفر گردید. از هر افق ژنتیکی یک نمونه خاک برداشت و به آزمایشگاه منتقل و تجزیه‌های فیزیکی و شیمیایی بر روی آن‌ها انجام شد. نتایج آنالیز حساسیت مدل نشان داد که نیتروژن کل، فسفر قابل جذب، درصد شیب، درصد سنگریزه، واکنش خاک و ماده آلی به عنوان ویژگی‌های تاثیرگذار اراضی در عملکرد گندم هستند. کارایی مدل‌های مذکور با موفقیت برای تشریح رابطه بین عملکرد گندم و ویژگی-های زودیافت بررسی شد. مدل ترکیبی نروفازی-ازدحام ذرات که یک روش ترکیبی عصبی، فازی و ازدحام ذرات بوده از نظر آماره‌های ضریب تبیین (89/0) و جذر میانگین مربعات خطا (5/213) عملکرد بهتری نسبت به دو مدل شبکه‌های عصبی مصنوعی و نروفازی دارد. همچنین، روش نروفازی دارای ضریب تبیین (84/0) و جذر میانگین انحراف مربعات خطا (2/243) و شبکه‌های عصبی مصنوعی دارای ضریب تبیین (81/0) و جذر میانگین نحراف مربعات (5/274) بود. معیار میانگین هندسی نسبت خطا (GMER) نیز نشان‌دهنده بیش‌برآوردی مدل شبکه‌ عصبی مصنوعی (24/0) و نروفازی (53/0) و کم-برآوردی مدل نرفازی-ازدحام (13/1) می‌باشد. نتایج نشان می‌دهد که مدل ترکیبی نروفازی–ازدحام ذرات به‌عنوان مدل کارا می‌تواند به‌عنوان یک ابزار قدرتمند در تخمین عملکرد گندم باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Application of Heuristic Methods in Prediction of Wheat Yield

نویسندگان [English]

  • Moslem Servati 1
  • Ali Barikloo 2
  • Parisa Alamdari 3
  • Kamran Moravej 3

1

2 -

3 -

چکیده [English]

Increasing demand for agricultural products and lack of appropriate soil and water resources with problems of field research reveals the application of efficient models to predict crop yield. This research aimed to examines the efficiency of artificial neural networks, comparative fuzzy neural network, adaptive nero fuzzy inference system and particle swarm optimization algorithm models for estimating the wheat yield through soil and land properties. For this purpose, 80 soil profiles were drilled in wheat fields’area in East Azerbaijan province with temperature and moisture regimes of mesic and aridic border to xeric, respectively. Soil samples were collected from each genetic horizon. The results of sensitivity analysis showed that total nitrogen, absorbable phosphorus, slope, gravel, soil reaction and organic matter are effective soil properties in wheat yields. The hybrid model of PSO-ANFIS was the best model from the viewpoint of statistical indices including R2 (0.89) and RMSE (213.5). Also, neuro-fuzzy method has a R2 (0.84) and RMSD (243.2) and artificial neural networks have a R2 (0.81) and RMSD (274.5), respectively. The GMER index also indicated overestimation of artificial neural network (0.24) and nero fuzzy (0.53) and underestimation of PSO-ANFIS model (1.13). The results indicated that the hybrid neuro-fuzzy-swarm particles model performed better than other models that can be used a powerful tool for estimating wheat yield.

کلیدواژه‌ها [English]

  • Artificial Neural Networke
  • Adaptive Nero fuzzy inference system
  • Particle Swarm Optimization
Asgari M.­S., Khodadadi M., Sarmadian F., and Gzny R. 2009. The effectiveness of artificial neural networks in the yield of wheat, barley and maize. Journal of Agriculture, 85(1): 62-71.
Asseng S., Turner N.­C. and Keating B.­A. 2001.Analysis of water- and nitrogen-use efficiency of wheat in a Mediterranean climate. Plant and Soil, 233 (1): 127-143.
Ayoubi SH., Givi J., Jalalian A., and Amini A.M. 2002. Quantitative land suitability evaluation in north Baron Region (Esfahan province) for wheat, barley, maize and rice. Journal of Agricultural and Natural Resource Research and Technology 3(6): 105-118. (In Persian)
Bagheri S., Gheysari M., Ayoubi S­h., and Lavaee N. 2012. Silage maize yield prediction using artificial neural networks. Journal of Plant Production, 19(4): 96-77.
Bremner J.­M. 1965. Inorganic forms of nitrogen. In: Black C.L., Evans D.D., Ensminger L.E., White J.L. and Clark F.E. (Ed.), Methods of Soil Analysis. Part 2, Chemical Analysis, Book Series No. 3. Soil Science Society of America and American Society of Agronomy, Madison, pp. 1179-1237.
Diacono M., Castrignanò A., Troccoli A., DeBenedetto D., Basso B., and Rubino P. 2012. Spatial and temporal variability of wheat grainyield and quality in a Mediterranean environment: A multivariate geostatistical approach, Field Crops Research, 131: 49-62.
Drummond S.T., Joshi A. and Sudduth. K.A. 1998. Application of Neural Networks: Precision Farming. Proceeding of the 26th IEEE World Congress on Computational Intelligence, Anchorage, England, pp. 288-299.
Eberhart R. C. and Kennedy J. 1995. A New Optimizer Using Particle Swarm Theory. Proceedings of the 6nd International Symposium on Micro­Machine and Human Science, Japan, pp. 39-43.
Emamgholizadeh S., Parsaeian M., and Baradaran M. 2015. Seed yield prediction of sesame using artificial neural network. European Journal of Agronomy, 68: 89-96.
Gee G.­W., and Bauder J. W. 1986. Particle size analysis. In: Klute A. (Ed.), Methods of Soil Analysis. Part I. Physical and Mineralogical Methods, Soil Science Society of America, Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp. 383-411.
Jang, J. S. 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, 23(3): 665-685.
Khoshnevisan B., Rafiee S., Omid M., and Mousazadeh H. 2014. Development of an intelligent system based on ANFIS for predicting wheat grain yield on the basis of energy inputs. Information Processing in Agriculture, 1(1): 14-22.
Liu J., and Goering C.E. 1999. Neural network for setting target corn yields. Proceeding of 5th ASAE Conference of Soil, Toronto, Canada, pp. 1123-1129.
McLean E.O. 1982. Soil pH and Lime requirement. In: Page A.L., Miller R.H. and Keeney D.R. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Micromorphological Properties, Soil Science Society of America Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp. 199-224.
Mirzaee S., Ghorbani-dashtaki Sh., Mohammadi J., Asadzadeh F., and Kerry R. 2017. Modeling WEPP erodibility parameters in calcareous soils in northwest Iran. Ecological Indicators, 74: 302-310.
Nelson R.E. 1982. Carbonate and gypsum. In: Page A.L., Miller R.H. and Keeney D.R. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods, Soil Science Society of America, Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp. 181-197.
Nelson R.E., and Sommers L. 1982. Total carbon, organic carbon and organic matter. In: Page A.L., Miller R.H. and Keeney D.R. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods, Soil Science Society of America, Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp. 532-581.
Norouzi M., Ayoubi SH.A., Jalalian A., Khademi H., and Dehghani, A. 2010. Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics. Acta Agriculture Scandinavia Section B–Soil and Plant Science, 60(4): 341-352.
Olsen S.­R., Cole C.­V., Watanabe F.­S., and Dean L.­A. 1954. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of Agriculture. Washington DC, 32p.
Roades, J. D. 1982. Soluble salts. In: Page A.L., Miller R.H. and Keeney D.R. (Ed.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Methods, Soil Science Society of America, Book Series No. 5. Soil Science Society of America and American Society of Agronomy, Madison, pp. 167-179.
Rötter R.­P., Carter T.­R., Olesen J.­E., and Porter J.R. 2011. Crop-climate models need an overhaul, Nature Climate Change, 1(4): 175-177.
Sadras V.­O., and McDonald G. 2012. Water Use Efficiency of Grain Crops in Australia: Principles, benchmarks and management. CSIRO, Australia, 114p.
Sadras V., Baldock J., Roget, D. and Rodriguez D. 2003. Measuring and modelling yield and water budget components of wheat crops in coarse textured soils with chemical constraints. Field Crops Research, 84 (3): 241 -260.
Sayegh A.H., Khan P., and Ryan, J. 1978. Factors affecting gypsum and cation exchange capacity determination in gypsiferous soils. Journal of Soil Science, 125: 294-300.
Shahbaziyan N., Dadi A., and Irannejad H. 2007. Response of winter wheat yield to rotation with wheat, fallow, soybean and alfalfa and application of manure in Quazwin province in Iran. Journal of Agricultural Science, 13(1): 125-135.
Shukla M., Lal R., and Ebinger M. 2004. Principle component analysis for predicting corn biomass and grain yields. Journal of Soil Science, 169: 215-224.
Sys C., and Verheye W. 1974. Land evaluation for irrigation of arid regions by the use of the parametric method. Proceeding of Transactions of 10th International Congress of Soil Science, Moscow.
Sys C., Van Ranst E., Debaveye J., and Beernaert F. 1993. Land Evaluation, Part III, Crop Requirements. General Administration for Development Cooperation Place, Brussels, Belgium, 197p.
Sys C., Van Ranset E., and Debaveye J. 1991. Land Evaluation, Part I, Principle in Land Evaluation and Crop Production Calculation, International Training Center for Post Graduate Soil Scientists, Ghent University, Ghent, Belgium, 238p.
Takahashi, S. and Anwar, M. R. 2007. Wheat grain yield, phosphorus uptake and soil phosphorus fraction after 23 years of annual fertilizer application to an Andosol. Field Crops Research, 101 (2): 160-171.
Yemefack M., Rossiter D.­G., and Njomgang R. 2005. Multi-scale characterization of soil variability within an agricultural landscape mosaic system in southern Cameroon. Geoderma, 125:117-14.
Zadeh, L. A. 1965. Fuzzy sets. Information and Control, 8(3): 338-353.