بررسی اثرات بارندگی پیشین بر فرسایش پاشمانی در خاک مارنی با استفاده از شبیه‌ساز باران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه خاکشناسی دانشگاه زنجان

2 دانش آموخته کارشناسی ارشد، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

3 دانشجوی دکتری، گروه علوم خاک، دانشکده کشاورزی، دانشگاه زنجان

چکیده

فرسایش پاشمانی از اشکال اصلی و مهم فرسایش آبی است. پاشمان ذرات خاک می‌تواند تحت تأثیر عوامل مختلف از جمله باران پیشین قرار بگیرد. تاکنون پژوهشی در زمینه علل تأثیر باران پیشین بر مقدار فرسایش پاشمانی در باران بعدی انجام نگرفته است. این پژوهش به‌منظور بررسی اثر باران پیشین بر پاشمان ذرات در خاک مارنی انجام گرفت. برای این منظور خاک‌دانه‌های با قطر 6 تا 8 میلی‌متری از یک خاک مارنی تحت آیش در غرب زنجان در سال 1395 جمع‌آوری شد. خاک‌دانه‌ها در 24 جعبه پلاستیکی به ابعاد 40 ×30 سانتی‌متر و عمق 10 سانتی‌متر برای بررسی اثر هشت تداوم باران در سه تکرار ریخته شدند. باران شبیه‌سازی شده با تداوم صفر، 7، 14، 21، 28، 35، 42 و 49 دقیقه به نمونه‌های خاک اعمال گردید. تخریب خاکدانه و محتوای رطوبتی خاک در نمونه‌های خاک پس از یک روز اندازه‌گیری شدند. پس از یک روز، جعبه‌های خاک تحت باران یکسان با شدت ثابت 40 میلی‌متر بر ساعت به مدت 15 دقیقه قرار گرفتند. فرسایش پاشمانی با اندازه‌گیری جرم ذرات پاشمان یافته در واحد سطح جعبه به دست آمد. بر اساس نتایج، تداوم باران پیشین اثری معنی‌دار بر تخریب خاک‌دانه‌ها و افزایش محتوای رطوبتی خاک داشت. بیش‌ترین شدت تخریب خاک‌دانه (72/21 درصد) و بالاترین محتوای رطوبتی خاک (08/29 درصد) در طولانی‌ترین تداوم باران (49 دقیقه) حاصل شد. میزان فرسایش پاشمانی در رخ‌داد باران بعدی تحت تأثیر دو متغیر تخریب خاک‌دانه (05/0>P) و محتوای رطوبتی خاک (01/0>P) ناشی از باران پیشین قرار گرفتند. تجزیه رگرسیونی چندگانه خطی نشان داد که از بین این دو متغیر، رطوبت پیشین خاک مهم‌ترین عامل تعیین‌کننده تغییرات فرسایش پاشمانی در رخ‌داد باران بعدی می‌باشد (01/0>P و 83/0=R2). مقدار فرسایش پاشمانی در هر رخ‌داد باران را می‌توان با اطمینان با استفاده از تعیین رطوبت پیشین خاک برآورد کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effects of antecedent rainfall on splash erosion in a Marl soil using rainfall simulator

نویسندگان [English]

  • Ali Reza Vaezi 1
  • Shokouh Karimi 2
  • Majid Foroumadi 3
1 Associate Professor of Soil Science, Soil Science Department, Faculty of Agriculture, University of Zanjan
2 Former M.Sc. Student of Soil Science, Soil Science Department, Faculty of Agriculture, University of Zanjan
3 Ph.D. Student of Soil Science, Faculty of Agriculture, University of Zanjan
چکیده [English]

Splash erosion is one of the most important kinds of water erosion. Splash of soil particles may affected by some factors especially antecedent rainfall event. Up to now, there isn’t any study on the effects of antecedent rainfall on splash erosion in the next rainfall. This study was conducted to investigate effect of the antecedent rainfall on the particles splash in a marl soil. Toward this, aggregates with a diameter of 6-8mm were taken of a marl soils under fallow condition in 2016. Aggregate were packed in 24 boxes with 30cm× 40cm dimensions and 30cm depth to investigate effect of eight rainfall durations levels at three replications. Simulated rainfall was applied to soil samples with eight durations (0, 7, 14, 21, 28, 35, 42 and 49 min). Aggregate breakdown and soil water content were determined in the soil samples after one day. After one day, soil boxes were placed under the same rainfall with a constant intensity of 40 mm h-1 for 15 min. Based on results, duration of antecedent rainfall significantly affected on the aggregate breakdown and increasing soil water content. The longest rainfall duration (49 min) appeared the highest aggregate breakdown (21.72%) as well as soil moisture content (29.08%).The amount of splash erosion in the next rain event were significantly influenced by the two soil variables changed by the antecedent rainfall i.e. aggregate breakdown (P

کلیدواژه‌ها [English]

  • Particles splash
  • Aggregate breakdown
  • Rainfall duration
  • Soil water content
Reference
Abdinezhad P., Feiznia S., and Peirovan H. 2013. Compare marl soil erodibility in Zanjan province using simulators rain. Iranian Journal of Soil Research, 28(2): 408-419. (In Persian)
Angers D.A., and Mehuys G.R. 1993. Aggregate stability to water. In: Carter M.R. (Ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science. Lewis Publishers, Boca Raton, pp. 651–657.
Bagheriankalat A., Ghoddusi J., Angoshtari H., and Gazanchian G.A. 2007. Investigation of the relationship between electrical conductivity and vegetation in marl soil. The 10th Iranian Soil Science Congress, Karaj. (In Persian)
Burt, R. 2009. Soil survey field and laboratory methods manual. Soil Survey Investigations Report No. 51. Lincoln, Nebraska. 84-99.
Carter M.R., and Gregorich E.G. 2008. Soil sampling and methods of analysis, second edition. Canadian Society of Soil Science Publisher, ISBN10: 0-8493-3586-8.
Cerda A. 2002. The effect of season and parent material on water erosion on highly eroded soils in Eastern Spain. Journal of Arid Environment, 52: 319-337.
Eskandari Z., and Charkhabi A.H. 2005. Comparison of aggregate sustainability in the horizontal horizons of Sorshian lands soil profile. The 9th Iranian Soil Science Congress, Tehran. (In Persian)
 Feiznia S., Heshmat M., Ahmadi H., and Ghodousi J. 2007. Study marl gully erosion Aghajari formation in Qasr-e Shirin. Journal of Construction Research, 74: 40-33. (In Persian)
Fu B., Newham L.T., and Ramos-Scharron C.E. 2010. A review of surface erosion and sediment delivery models for unsealed roads. Environmental Modelling and Software, 25(1), pp.1-14.
Morgan R.P.C. 1981. Field measurement of Splash Erosion. Erosion and Sediment Transport Measurement. Proceeding of the Florence Symposium, IAHS Pub.
Gee G.W., and Bauder J.W. 1986. Particle size analysis. In: Methods of soil analysis, Part1. 2nd Ed. Klute, A. (Ed). Agronomy Monograph, 9. Madison. WI. pp. 383-411.
Goh T.B., Arnaud R.J.S., and Mermut A.R. 1993. Aggregate stability to water. In: Carter M.R. (Ed.), Soil Sampling and Methods of Analysis. Canadian Society of Soil Science, Lewis Publishers, Boca Raton, pp. 177–180.
Greenland G.J., and Payne D. 1975. Determination of the structural stability class of English and Welsh soil using a water coherence test. Journal of Soil Science, 46: 294-303.
Hamidi Nehrani S., and Vaezi A.R. 2013. Effect of polyvinyl acetate on hydraulic conductivity, runoff and sediment production in a marl soil. Journal of Water and Soil, 27(4): 792-801. (In Persian)
Keamper W.D., Rosenau R.C., and Dexter A.R. 1987. Cohesion development in disrupted soils as affected by clay and organic matter content and temperatures. Soil Science American Journal, 51: 860-867.
Kemper W.D., and Rosenau R.C. 1986. Aggregate stability and size distribution.  In: Klute A. (Ed.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd Edition, Agronomy Monograph, 9. ASA and SSSA, Madison, WI. pp. 425-442.
Kemper W.D., and Rosenau R.C. 1986. Aggregate stability and size distribution, In: Klute A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods, pp. 425–442.
Loch R.J., and Pocknee C. 1995. Effect of aggregation on soil erodibility: Australian experience. Journal Soil Water Conserve, 50: 504-506.
Lujan D.L. 2006. Soil physical properties affecting soil erosion in tropical soils. Invited Presentations, College on Soil Physics, 232-245.
Luk S.H. 1985. Effect of antecedent soil moisture content on rainwash erosion. Catena, 12: 129-139.
Martinez-Mena M., Williams A.G., Ternan J.L., and Fitzjohn C. 1998. Role of antecedent soil water content on aggregates stability in a semi-arid environment. Soil and Tillage Research, 48: 71-80.
Mengistu B., Defersha A., and Melesse M. 2012. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment ratio. Catena, 90: 47-52.
Mohamed A.M.O. 2000. The role of clay minerals in marly soils on its stability. Engineering, 57: 130-193.
Morgan R.P.C. 2005. Soil Erosion and Conservation, 3rd Edition, Blackwell Publishing, 304p.
Nearing M.A., Foster G.R., Lane L.J., and Finkner S.C. 1989. A process-based soil erosion model for USDA-water erosion prediction project technology. Transactions of the ASAE 32:1587–1593.
Nelson D.W., and Sommer L.E. 1982. Total carbon, organic carbon, and organic matter, In: Page A.L. (Ed.), Methods of Soil Analysis: Chemical and Microbiological Properties, ASA Monograph, 9 (2). American Society Agronomy, Madison, pp. 539–579.
Rhoades J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Page A.L. (Ed.), Methods of Soil Analysis, Chemical Methods, pp.417-435.
Ruiz-Sinoga J.D., and Romero Diaz A. 2010. Soil degradation factors along a Mediterranean pluviometric gradient in southern Spain. Geomorphology, 118: 359-368.
Soltani Gerdefaramarzi S., Ghezelseflu N., and Boroghani M. 2014. Change of splash erosion rate in rainfall different duration and intensity on marl soils. Environmental Erosion Research Journal, 4(15): 72-84. (In Persian)
Truman C.C., and Bradford J.M. 1990. Effect of antecedent soil moisture on splash detachment under simulated rainfall. Soil Science American Journal, 150: 787-798.
Truman C.C., Bradford J.M. and Ferris J.E. 1990. Antecedent water content and rainfall energy influence on soil aggregate breakdown. Soil Science American Journal, 54: 1385-1392.
Vaezi A. R., and Vatani A. 2014. Determination of rill erodibility in some Zanjan soils under rain simulated. Journal of Science and Technology of Agriculture and Natural Resources, 71: 59-67. (In Persian)
Vaezi A.R., and Gharehdaghli H. 2013. Quantification of rill erosion development in Marl soils of Zanjanroud watershed in North West of Zanjan, Iran. Journal of Water and Soil, 27(5): 872-881. (In Persian)
Vaezi A.R., and Hasanzadeh H. 2016. Investigation of soil loss from small plots with different soil textures in sequential simulated rainfall events. Journal of Sciences and Technology of Agriculture and Natural Resources, 20(75): 201-210. (In Persian)
Vaezi A.R., Rostami A., and Mohammadi M.H. 2011. Time variations of degradation and splash processes in marl soil under simulated rain. Iranian Journal of Soil Research, 25(4): 362-371. (In Persian)
Valettea S., Prevosta L., and Lucasa L. 2006. SODA project: A simulation of soil surface degradation by rainfall. Gilles Computers and Graphics, 30: 494-506.
Watung R.L., Sutherland R.A., and El-Swaify S.A. 1996. Influence of rainfall energy flux density and antecedent soil moisture content on splash transport and aggregate enrichment ratios for a Hawaiian Oxisol. Soil Technology, 9: 251-272.
Wischmeier W.H., and Smith D.D. 1978. Predicting rainfall erosion losses-a guide to conservation planning. Predicting rainfall erosion losses-a guide to conservation planning. 58p.
Wuddivira M.N., Stone R.J., and Ekwue E.I. 2009. Clay, organic matter, and wetting effects on splash detachment and aggregate breakdown under intense rainfall. Soil Science Society of America Journal, 73(1): 226-232.  
Yusefi A., Farrokhian Firouzi A., and Khalili Moghaddm B. 2015. Experimental investigation of the aggregate breakdown and splash erosion in different conditions duration and rainfall intensity in selected soil of Dashtegol watershed of Masjed Soleyman. Journal of Water and Soil Conservation, 22(2): 175-187. (In Persian)
Zhou W., and Wu B. 2008. Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: a case study of upstream Chaobaihe River catchment, North China. International Journal Sediment Research, 23(2): 167-173.