مقایسه کارایی برخی مدل‌های نفوذ آب به خاک بر اساس داده‌های به دست آمده از استوانه‌های دوگانه و نرم‌افزار HYDRUS-1D

نوع مقاله : مقاله پژوهشی

نویسندگان

1 علوم خاک، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

2 عضو هیات علمی دانشگاه شهرکرد

3 بخش تحقیقات خاک و آب، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان اصفهان، سازمان تحقیقات، آموزش و ترویج کشاورزی، اصفهان، ایران

چکیده

نفوذ آب به خاک یکی از مهم­ترین فرآیندهای فیزیکی خاک است. اهمیت فرآیند نفوذ سبب شده که مدل­های فیزیکی و تجربی گوناگونی به‌منظور کمّی‌سازی این پدیده ارائه شود. هرکدام از این مدل­ها بسته به روش اندازه­گیری کارایی متفاوتی را نشان می­دهند. لذا در پژوهش حاضر داده­های حاصل از آزمایش­های نفوذپذیری به روش استوانه­های دوگانه در کلاس­های بافتی متفاوت و از مناطق مختلف کشور جمع­آوری شد. سپس شرایط نفوذ آب به خاک در محیط نرم­افزار HYDRUS-1D برای مناطق موردنظر، شبیه­سازی و داده­های نفوذ عمودی آب به خاک به روش حل مستقیم معادله ریچاردز استخراج شد. برای کمّی‌سازی ویژگی­های هیدرولیکی خاک در معادله ریچاردز از مدل ون­گنوختن-معلم استفاده شد. به این منظور پارامترهای هیدرولیکی مدل ون­گنوختن-معلم با استفاده از روش حل عددی معکوس در محیط HYDRUS برای خاک هر منطقه بهینه‌سازی شد و مورد استفاده قرار گرفت. به‌منظور ارزیابی عملکرد مدل­های نفوذ هورتون، کوستیاکوف، کوستیاکوف-لوییز و فیلیپ بر اساس هر دو گروه داده­های اندازه­گیری شده و شبیه‌سازی‌شده از آماره‌های میانگین خطا (ME)، ریشه­ی میانگین مربعات خطا (RMSE)، میانگین قدرمطلق میانگین خطا (MAME)، ضریب همبستگی پیرسون (r) و کارایی مدل (EF) استفاده شد. نتایج نشان داد که در داده­های نفوذ اندازه­گیری شده با استوانه­های دوگانه در بافت­های مختلف، مدل کوستیاکوف-لوییز و در داده­های نفوذ شبیه‌سازی‌شده با استفاده از نرم‌افزار HYDRUS-1D، مدل هورتون بهترین عملکرد را در برآورد نفوذ تجمعی آب به خاک داشتند. مدل فیلیپ نیز در هر دو گروه داده نفوذ اندازه­گیری شده و شبیه‌سازی‌شده دارای کم‌ترین کارایی در برآورد نفوذ تجمعی آب به خاک بود.

کلیدواژه‌ها


عنوان مقاله [English]

Performance of some infiltration models based on obtained data from double-ring and HYDRUS-1D software

نویسندگان [English]

  • asma mousavi dehmurdi 1
  • shoja ghorbani-dashtaki 2
  • parisa MASHAYEKHI 3
1 Soil Science, Faculty of agriculture, Shahrekord University, shahrekord, iran
2 Professor, Department of Soil Science, Faculty of agriculture, Shahrekord University
3 Soil and Water Research Department, Isfahan Agricultural and Natural Resources Research and Education Center. Agricultural Research, Education and Extension organization (AREEO), Isfahan, Iran.
چکیده [English]

Water infiltration is one of the most important properties of soil. The importance of infiltration process has led to development of several theoretical and empirical infiltration models. However, the applicability of these models is strongly subjected to the method of infiltration measurement. In this study, double ring infiltration data were collected from different regions of Iran with different soil textures. On the other hand, HYDRUS-1D model was used to simulate vertical infiltration through forward solution of the Richards’ equation. Van Genuchten-Mualem model was used to quantify the soil hydraulic properties. For this purpose, the hydraulic parameters of van Genuchten-Mualem model were optimized using inverse modeling in the HYDRUS, for each region's soil and were used for simulation. In order to evaluate the accuracy of the Horton, Kostiakov, Kostiakov-Louis and Philip models, based on measured and simulated infiltration data, mean error (ME), root mean square error (RMSE), mean absolute mean error (MAME), Pearson correlation coefficient (r) and modeling efficiency (EF) statistics were used. The results indicated that the Kostiakov-Lewis model has had the best performance in different soil textures based on measured double ring infiltration data. Horton model has had the best performance based on HYDRUS simulated infiltration data in different soil textures. The Philip model had the least efficiency in estimating cumulative infiltration based on both measured and simulated infiltration data.

کلیدواژه‌ها [English]

  • Horton model
  • Infiltration
  • Kostiakov-Lewis model
  • Kostiakov model
  • Philip model
Bamutaze Y. Makooma T. Gilbert M. Vanacker V. Bagoora F. Magunda M. Obando J. and Wasigeh J. 2010. Infiltration characteristics of volcanic sloping soils on Mt. Elgon, Eastern Uganda Yazidhi. Catena, 80(2):122–130.
Bhardwaj A. and Singh R. 1992. Development of a portable simulator infiltrometer for infiltration, runoff and erosion studies. Agricultural Water Management, 22(4):235-248.
Blake, G.R. and Hartge, K.H. 1986. Bulk Density. In: Klute, A. (Ed). Methods of soil analysis, Part 1. Physical and Mineralogical Methods-Agronomy Monograph, No. 9, Soil Science Society of America and American Society of Agronomy, Madison, pp: 363-375
Bland, J.M. and Altman, D.G., 1997. Statistics notes: Cronbach's alpha. Bmj, 314(7080), 572p.
Bouwer H. 1986. Intake rate. Cylinder infiltrometer. In: Klute A. (Eds.). Methods of soil analysis. Part 1. America Society of Agronomy. Soil Science Society of American. Madison. Wisconsin USA. pp: 825-843.
Burt R. 2004. Soil Survey Laboratory Methods Manual. United States Department of Agriculture, Natural Resources Conservation Service. USA, 700p.
Cook F.J. 2002. The twin-ring method for measuring saturated hydraulic conductivity and sorptivity in the field. In: McKenzie. N. K. Coughlan and H. Cresswell. Soil physical measurement and interpretation for land evaluation, Part 7. CSIRO Publishing, pp: 108-118.
Duan, R. Fedler, C.B. and Borrelli, J. 2011. Field evaluation of infiltration models in lawn soil. Irrigation Science, 29(5): 379-389.
Fakher Nikcheh A., Vafakhah M., and Sadeghi S.H.R. 2014. Evaluation of different cumulative infiltration model performance in different land use and soil texture, using rainfall simulator. Journal Water Soil Know, 3)1(: 183-193.
Ghorbani Dashtaki1 Sh., Homaee M., and Mahdian M.H. 2009. Estimating soil water infiltration parameters using Artificial Neural Networks. Journal of water and soil, 23(1): 185-198. (in Persian)
Green W.H. and Ampt G. 1911. Studies of soil physics. Journal of Agricultural Science. 4(1): 1-24.
Haverkamp R. Rendon L. and Vachaud G.1987. Infiltration equations and their applicability for predictive use. In: Yu- SI Fok (Ed.) Infiltration Development and Application. Honolulu, Hawai, pp: 142-152
Hillel D. 1998. Environmental soil physics. Academic Press. New York. 771p.
Ho, R. 2006. Handbook of univariate and multivariate data analysis and interpretation with SPSS. CRC Press. 406p.
Horton R.E. 1940. An Approach towards a physical interpretation of infiltration capacity. Soil Science Society of America Proceedings, 5(C): 399-417.
Jalini M., Kaveh F., Pazira A., Parehkar M., and Abedi M. 2007. Moisture estimation in the root zone of sugar beet by LEACHM model. Journal of Agricultural Sciences and Natural Resources, 12(5): 28-38.
Klute. A. 1986. Methods of Soil Analysis. Part 1, Physical and Mineralogical Methods. 2nd Ed., Agronomy No. 9. ASA/SSSA Inc., Madison, Wisconsin, USA.
Kostiakov A.N. 1932. On the dynamics of the coefficient of water-percolation in soils and on the necessity for studying it from a dynamic point of view for purposes of amelioration. Transactions Congress International. Society for Soil Science, Moscow, pp: 17-21.
Kavoosi S.M., Vafakhah M., and Mahdian M.H. 2013. Evaluation of some equations of infiltration of water into soil in different land use, Kojoor catchments. Journal Irrigation Water Engineering, 4(13) 1-13.
Lai J., and Ren L. 2007. Assessing the size dependency of measured hydraulic conductivity using double-ring infi ltrometers and numerical simulation. Soil Science Society American Journal, 71(6):1667–1675.
Lai J., Luo Y., and Ren L. 2010. Buffer index effects on hydraulic conductivity measurements using numerical simulations of double-ring infiltration. Soil Science Society of American Journal, 74(5):1526–1536.
Mashayekhi P. 2016 (a). Estimation of soil hydraulic properties using double-ring infiltrometer data via inverse solution. PhD. dissertation, Univercity of shahrekord, Faculty of Agriculture.
Mashayekhi P., Ghorbani-Dashtaki S., Mosaddeghi M.R., Shirani H., and Mohammadi Nodoushan A.R. 2016 (b). Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D. International Agrophysics, 30(2): 203-210.
Mashayekhi P., Ghorbani-Dashtaki S., Mosaddeghi M.R., Shirani H., and Mohammadi Nodoushan A.R. 2017. Estimation of soil hydraulic parameters using double-ring infiltrometer data via inverse method. Iranian Journal of Soil and Water Research, 47(4): 829-838. (In Persian)
 Menziani M., Pugnaghi S., and Vincenzi S. 2007. Analytical solutions of the linearized Richards. equation for discrete arbitrary initial and boundary condition. Journal of Hydrology, 332:214-225.
Mezencev V.J. 1948. Theory of formation of the surface runoff. Meteorologiae Hidrologia, 3: 33-40.
Mishra K., Tyagi V., and Singh P. 2003. Comparison of infiltration models. Hydrological Processes, 17(13): 2629-2652.
Mohamadi kangarani H., Khalilzadeh M., and helisaz A. 2011. Investigating the Relationship Between Land Use Change and Soil Penetration Rate and Its Impact on the Flood in 2008 in the Nehavard Forest Watershed. Journal management system, 4(11): 75-88. (In Persian)
Mukheibir P. 2008. Water resources management strategies for adaptation to climate-induced impacts in South Africa. Water Resources Management, 22(9):1259-1276.
Nelson R.E. 1982. Carbonate and Gypsum. In: Page, A.L., R.H. Miller, and D.R. Keeney, (Eds.). Methods of Soil Analysis-Part 2. Chemical and microbiological properties-Agronomy Monograph No. 9. Soil Science Society of America and American Society of Agronomy, Madison, pp: 181-197
Neyshabouri MR., Fakhery-Fard A., Farsadizade D., Sadeghian N., Kheiry J. 2009. Coeficients of Kostiakov, Modified Kostiakov and Philip Infiltration Models on the Basis of Soil Bulk Density and Initial Water Content. Water and soil science, 1(19): 57-69. (In Persian)
Parchami Araghi F., Mirlatifi S.M., Ghorbani Dashtaki Sh., and Mahdian M.H. 2010. Evaluating Some Infiltration Models Under Different Soil Texture Classes and Land Uses. Iranian Journal Irrigation and drainage, 4(2): 193-205. (In Persian)
Philip J.R. 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Science, 83(5): 345-357.
Pollalis E.D., and Valiantzas J.D. 2014. Isolation of a 1D infiltration time interval under ring infiltrometers for determining sorptivity and saturated hydraulic conductivity: numerical, theoretical, and experimental approach. Journal of Irrigation and Drainage Engineering, 141(2): 04014050.
Rashidi M., and Seyfi, K. 2007. Field comparison of different infiltration models to determine the soil infiltration for border irrigation method. Journal Agriculture andEnvironment Science, 2(6): 628-632.
Reynolds W.D. 1993. Unsaturated hydraulic conductivity: Field measurement. In M.R. Carter (Ed.) Soil sampling and methods of analysis. Canada Society Soil Science. Lewis Publish., Boca Raton, FL. pp. 633-644
Reynolds W.D. Elrick D.E. and Youngs E.G. 2002. Ring or cylinder infiltrometers (vadose zone). In: Dane, J.H. and G.C. Topp (Eds), Methods of soil analysis--Part 4. Physical methods, SSSA, Wiconsin, USA, pp: 818-826.
Richards L. A. 1931. Capillary conduction of liquids through porous mediums. Journal of Applied Physics, 1:318–333.
Silva L.L. 2007. Fitting infiltration equations to center-pivot irrigation data in a Mediterranean soil. Agricultural Water Management, 94(1): 83–92.
Šimůnek J. Šejna M. and van Genuchten M.Th. 1999. HYDRUS-2D software for simulating water fl ow and solute transport in two-dimensional variably saturated media. Version 2.0. Int. Ground Water Model. Ctr. Colorado School of Mines. Golden.
Šimůnek J. Van Genuchten M.Th. and Šejna M. 2012. HYDRUS: Model use, calibration and validation, In Special issue on Standard/ Engineering Procedures for Model Calibration and Validation, Stransactions of the ASABE, vol. 55, 2012, no. 4, pp: 1261–1274.
Smith E. R. 1976. Approximation for vertical infiltration rate patterns. ASAE. Annual international meeting, pp: 75-2010.
Tsanis I.K. 2006. Modelling leachate contamination and remediation of groundwater at a landfill site. Water Resources Management, 20(1):109–132.
Vaghefi M., and Movahedzadeh M. 2012. Evaluation and comparison of Three Infiltration Methods in the Tow Catchment Area of in boshehr state by Use Double Ring Tests. Journal of Engineering Geology, 6(1): 1445-1458. (In Persian)
Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37: 29-39.
Zolfaghari A.A., Mirzaee S., and Gorji M. 2012. Comparison of different models for estimating cumulative infiltration. Journal of Soil Science, 7(3): 108-115.