نوع مقاله : مقاله پژوهشی

نویسندگان

گروه خاکشناسی، دانشکده مهندسی کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

کیفیت خاک تحت تاثیر نوع کاربری و مدیریت زمین است. ارزیابی وضعیت کیفی خاک، راهنمای مناسبی برای اتخاذ روش-های مدیریت پایدار و پیش‌گیری از تخریب این ماده حیاتی می‌باشد. هدف این پژوهش تبیین تغییرات ویژگی‌های خاک در کاربری‌های مختلف و تعیین مهم‌ترین شاخص‌های ارزیابی کیفیت خاک بود. بدین منظور در مجموع 50 نمونه خاک از چهار کاربری جنگل، مرتع، دیم‌زار و کشت آبی از حوضه آبخیز لردگان جمع‌آوری شد. سپس ویژگی‌های خاک شامل جرم مخصوص ظاهری، اجزای بافت، کربنات کلسیم معادل، ظرفیت تبادل کاتیونی، pH، هدایت الکتریکی، کربن آلی، نیتروژن کل، نسبت کربن به نیتروژن، تنفس پایه میکروبی و میانگین وزنی قطر خاکدانه‌ها اندازه‌گیری شدند. همچنین میانگین دمای ماهانه و بارش سالیانه و نیز ارتفاع و شیب نقاط نمونه‌برداری تعیین گردید. نتایج تجزیه به مولفه‌های اصلی نشان داد که شاخص‌های کربن آلی، درصد شن، بارندگی سالیانه و ارتفاع، مهم‌ترین عوامل ایجاد کننده تغییرات در خاک‌های منطقه بوده است. این تحلیل توانست با ایجاد 5 مولفه اصلی، 81 درصد از تغییرات ویژگی‌های خاک‌های منطقه را به خوبی تبیین نماید. همچنین تحلیل تشخیص به خوبی توانست انواع کاربری‌ها را با استفاده از مجموعه‌ای از ویژگی‌های منتخب، از یکدیگر متمایز نماید. مقدار طبقه‌بندی صحیح در این تحلیل 94 درصد بود. نتایج این پژوهش بر قابلیت کاربرد روش‌های آماری چندمتغیره در بررسی کیفیت خاک‌ها تاکید دارد. بررسی جداگانه هر یک از شاخص‌های منتخب، دلالت بر کیفیت خوب خاک‌های جنگلی نسبت به سایر کاربری‌ها داشت و دیم‌زارها، وضعیت کیفی نامناسبی داشتند. بنابراین مدیریت پایدار منطقه، مستلزم پیشگیری از تغییر کاربری اراضی و احیای اراضی تخریب‌شده به منظور ارتقای کیفیت خاک است.

کلیدواژه‌ها

عنوان مقاله [English]

Application of multivariate statistical methods for evaluating soil quality indices in Lordegan semiarid region

نویسندگان [English]

  • Elham Alidoust
  • Majid Afyuni
  • Mohammad Ali Hajabbasi
  • Mohammad Reza Mosaddeghi

Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran

چکیده [English]

Soil quality is affected by the type of land use and management. Evaluation of soil quality indices is a suitable guide for adopting sustainable management practices and preventing soil degradation. The goals of this research were to explain soil variations and to determine the most important soil quality assessment indices. Therefore, totally 50 soil samples were collected from four land uses including forest, pasture, rain fed and irrigated farmlands in Lordegan watershed. Then soil characteristics consisted of soil bulk density, soil texture components, calcium carbonate equivalent, cation exchange capacity, pH, electrical conductivity, organic carbon, total nitrogen, carbon to nitrogen ratio, microbial basal respiration and mean weight diameter of aggregates were measured. Also, average monthly temperature, annual precipitation, elevation and slope of sampling points were determined. The results of principal component analysis illustrated that organic carbon, sand content, annual precipitation and elevation were the most important factors causing soil variations in the area. This method could explain 81% of soil variations in the region by creating 5 principal components. Furthermore, various kind of land uses were distinguished successfully according to a set of selected soil attributes using Discriminant Analysis. The percentage of correct classification in this analysis was 94%. The results of this study emphasize on the applicability of multivariate statistical methods in the assessment of soil quality. The individual examination for each of selected indices indicated the high quality of forest soils compared to the other land uses. However, rain fed farmlands had a poor quality situation. Therefore, achieving sustainable management in the area requires the prevention of land use change and the restoration of degraded lands for improving soil quality.

کلیدواژه‌ها [English]

  • Land use
  • Soil organic carbon
  • Principal component analysis
  • Discriminant analysis
Ajmi M., Khormali F. and Ayobi Sh. 2008. Changes in some soil quality parameters due to land use change in different position of slope of loess land in the east of Golestan province. Iranian Journal of Soil and Water Research, 39(1): 15–30. (In Persian)
Alijanpour A., Banj Shafiei A. and Eshaghi Rad J. 2010. Investigation of natural regeneration characteristics in west oak forests within different levels of site factors (case study: Piranshahr region). Iranian Journal of Forest, 2(3): 209–219. (In Persian)
Anderson J.P.E. 1982. Soil Respiration. In: Page A.L., Mille R.H. and Keeney D.R. (Ed.), Methods of Soil Analysis–Part 2. Chemical and Microbiological Properties, American Society of Agronomy and Soil Science Society of America, Madison USA: 831–871.
Armenise E., Redmile-Gordon M.A., Stellacci A.M., Ciccarese A. and Rubino P. 2013. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil and Tillage Research, 130: 91–98.
Beniston J.W., Lal R. and Mercer K.L. 2016. Assessing and managing soil quality for urban agriculture in a degraded vacant lot soil. Land Degradation and Development, 27: 996–1006.
Blake G.R. and Hartge K.H. 1986. Bulk density. In: Klute A. (Ed.), Methods of Soil Analysis— Part 1. Physical and Mineralogical Methods. American Society of Agronomy and Soil Science Society of America, Madison, pp. 363–375.
Bremner J.M. and Mulvaney C.S. 1982. Nitrogen total. In: Page A.L., Mille R.H. and Keeney D.R. (Ed.s), Methods of Soil Analysis— Part 2. Chemical and Microbiological Properties. American Society of Agronomy and Soil Science Society of America, Madison, pp. 595–624.
Cambardella C. and Elliott E. 1993. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 57: 1071–1076.
Celik I. 2005. Land use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey. Soil and Tillage Research, 83: 270–277.
Cherubin M.R., Karlen D.L., Cerri C.E.P., Franco A.L.C., Tormena C.A., Davies C.A. and Cerri C.C. 2016. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLOS ONE, 11(3): 1–26.
Cox M.S., Gerard P.D., Warldlaw M.C. and Abshir M.J. 2003. Variability of selected soil properties and their relationships with soybean yield. Soil Science Society of America Journal, 67:1296–1302.
Cruz Ruiz E., Cruz Ruiz A., Vaca R., Aguila P. and Lugo J. 2015. Assessment of soil parameters related with soil quality in agricultural systems. Life Science Journal, 12(1): 154–161.
Duval M.E., Galantini J.A., Iglesias J.O., Canelo S., Martínez J.M. and Wall L. 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil and Tillage Research, 131: 11–19.
Fernández-Romero M.L., Parras-Alcántara L., Lozano-García B., Clark J.M. and Collins C.D. 2016. Soil quality assessment based on carbon stratification index in different olive grove management practices in Mediterranean areas. Catena, 137: 449–458.
Gee G.W. and Bauder J.W. 1986. Particle size analysis.p. In: Klute A. (Ed.) Methods of Soil Analysis. Part1. 2nd Ed. Physical and Mineralogical Methods. Agronomy Monograph 9. American Society of Agronomy and Soil Science Society of America, Madison, WI, pp: 383–411.
Hagen-Thorn A., Callesen I., Armolaitis K. and Nihlgard B. 2004. The impact of six European tree species on the chemistry of mineral topsoil in forest plantations on former agricultural land. Forest Ecology and Management, 195: 373–384.
Hair J.F., Anderson R.E., Tatham R.L. and Black W.C. 1998. Multivariate Data Analysis. Prentice Hall, Upper Saddle River, New Jersey.
Islam K.R. and Weil R.R. 2000. Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems and Environment, 79: 9–16.
Johnson R.A. and Wichern D.W. 1982. Applied multivariate statistical analysis. Prentice-Hall Inc., Englewood Cliffs, SA, 590p.
Karlen D.L., Andrews S.S., Wienhold B.J. and Zobeck T.M. 2008. Soil quality assessment: Past, present and future. Journal of Integrative Biosciences, 6: 3–14.
Karlen D.L., Peterson G.A. and Westfall D.G. 2014. Soil and water conservation: Our history and future challenges. Soil Science Society of America Journal, 78: 1493–1499.
Lal R. 2009. Ten tenets of sustainable soil management. Journal of Soil and Water Conservation, 64: 20A–21a.
Mendham D.S., Smethurst P.J., Holz G.K., Menary R.C., Grove T.S., Weston C. and Baker T. 2002. Soil analyses as indicators of phosphorus response in young eucalypt plantations. Soil Science Society of America Journal, 66: 959–968.
Ministry of Agriculture. 1367. Comprehensive plan for the restoration and development of agriculture and natural resources of the north Karoun watershed. Volume II. Climatology. (In Persian)
Mohammadi J., Khademi H. and Nael M. 2005. Study the variability of soil quality in selected ecosystems of central Zagros. Journal of Science and Technology of Agriculture and Natural Resources, 9(3): 105–120. (In Persian)
Mojarrad F. and Moradifar H. 2003. Modelling the relationship between precipitation and elevation in Zagros. Human Sciences MODARES, 7(2): 163–182. (In Persian)
Muñoz A., López-Piñeiro A. and Ramírez M. 2007. Soil quality attributes of conservation management regimes in a semi-arid region of southwestern Spain. Soil and Tillage Research, 95: 255–265.
Nabiollahi K., Taghizadeh-Mehrjardi R., Kerry R. and Moradian Sh. 2017. Assessment of soil quality indices for salt-affected agricultural land in Kurdistan Province, Iran. Ecological Indicators, 83: 482–494.
Nakajima T., Lal R. and Jiang S. 2015. Soil quality index of a crosby silt loam in central Ohio. Soil & Tillage Research, 146: 323–328.
Nelson R.E. 1982. Carbonate and gypsum. In: Page A.L., Mille R.H. and Keeney D.R. (Ed.), Methods of Soil Analysis— Part 2. Chemical and Microbiological Properties. American Society of Agronomy and Soil Science Society of America, Madison, pp. 181–199.
Ngo-Mbogba M., Yemefack M. and Nyeck B. 2015. Assessing soil quality under different land cover types within shifting agriculture in South Cameroon. Soil & Tillage Research, 150: 124–131.
Ogle S.M., Swan A. and Paustian K. 2012. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agriculture, Ecosystems and Environment, 149: 37–49.
Page A.L. 1982. Methods of soil analysis–Part 2. Chemical and Microbiological Properties. American Society of Agronomy and Soil Science Society of America. 1142p.
Post W.M. and Kwon K.C. 2000. Soil carbon sequestration and land use change: processes and potential. Global Change Biology, 6: 317–327.
Rasouli-Sadaghiani M.H. and Sheikhloo F. 2016. Effects of agronomic, orchard and forest land uses on Soil Quality Index (SQI) in west Azerbaijan province. Water and Soil science, 26(2-1): 141–153. (In Persian)
Salchow E., Lal R., Fausey N.R. and Ward A. 1996. Pedotransfer functions for variable alluvial soils in southern Ohio. Geoderma, 73: 165–181.
Sanchez-Navarro A., Gil-Vazquez J.M., Delgado-Iniesta M.J., Marin-Sanleandro P., Blanco-Bernardeau A. and Ortiz-Silla, R. 2015. Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems. Catena, 131: 35–45.
Sharma S. 1996. Applied Multivariate Techniques. John Wiley and Sons, New York.
Shukla M.K., Lal R. and Ebinger M. 2004. Principal component analysis for predicting corn biomass and grian yield. Soil Science, 169: 215–224.
Shukla M.K., Lal R. and Ebinger M. 2006. Determining soil quality indicators by factor analysis. Soil and Tillage Research, 87(2): 194–204.
Singh K.P., Ghoshal N. and Singh S., 2009. Soil carbon dioxide flux, carbon sequestration and crop productivity in a tropical dryland agroecosystem: Influence of organic inputs of varying resource quality. Applied Soil Ecology, 42(3): 243–253.
Stockmann U., Adams M.A., Crawford J.W., Field D.J., Henakaarchchi N., Jenkins M., Minasny B., McBratney A.B., Courcelles V.d.R.d., Singh K., Wheeler, I., Abbott, L., Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., Lehmann, J., O’Donnell, A.G., Parton, W.J., Whitehead, D., Zimmermann, M. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems and Environment, 164: 80–99.
Sumner M.E. and Miller W.P. 1996. Cation exchange capacity and exchange coefficients. In: Sparks D.L. (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods. American Society of Agronomy and Soil Science Society of America, Madison. WI, pp. 1201–1229.
Walkley A. and Black I.A. 1934. An examination of digestion method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37: 29–38.
Winchell M., Srinivasan R., Di Luzio, M.and Arnold J. 2013. ArcSWAT interface for SWAT2012: user's guide. Blackland Research and Extension Center, Texas Agrilife Research. Grassland. Soil and Water Research Laboratory, USDA Agricultural Research Service, Texas, 3.
Wu R. and Tiessen H. 2002. Effect of land use on soil degradation in Alpine grassland soil, China. Soil Science Society of America Journal, 66: 1648–1655.
Zarei W. and Sheklabadi M. 2015. Soil quality assessment in different land uses using multivariate statistical analysis. Journal of Science and Technology of Agriculture and Natural Resources, 18(70): 101–111. (In Persian)
Zhao G., Mu X., Wen Z., Wang F. and Gao P. 2013. Soil erosion, conservation, and eco environment changes in the Loess Plateau of China. Land Degradation and Development, 24: 499–510.
Zhao X., Wu P., Gao X. and Persaud N. 2015. Soil quality Indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degradation and Development, 26: 54–61.