اثر کمبود روی قابل جذب بر برخی خصوصیّات فیزیولوژیکی و مورفولوژیکی گندم نان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری اصلاح نباتات، گروه اصلاح و بیوتکنولوژی گیاهی, دانشکده کشاورزی, دانشگاه ارومیه

2 گروه اصلاح و بیوتکنولوژی گیاهی, دانشکده کشاورزی، دانشگاه ارومیه

3 دانشیار گروه اصلاح و بیوتکنولوژی گیاهی دانشکده کشاورزی، دانشگاه ارومیه

4 دانشگاه ارومیه

چکیده

عنصر روی (Zn) یکی از حیاتی­ترین عناصر غذایی محدود کننده رشد گیاهان می­باشد. به­منظور بررسی اثر کمبود روی بر برخی خصوصیات فیزیولوژیک و مورفولوژیک گندم نان (Triticum aestivum L.)، آزمایشی به­صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار در گلخانه اجرا شد. ارقام روی-کارا (بیات و نیک­نژاد) و روی-ناکارا (هیرمند و کرج­1) در دو شرایط روی کافی (پنج میلی­گرم درکیلوگرم خاک) و کمبود روی (صفر میلی­گرم درکیلوگرم خاک) کشت و صفات وزن هزار دانه، تعداد دانه در سنبله، میزان کلروفیل، غلظت روی دانه، ریشه و برگ و برخی صفات مورفولوژیک اندازه­گیری شدند. بر اساس نتایج تجزیه واریانس، اثرات اصلی سطح روی و ارقام بر تمامی صفات مورد مطالعه معنی­دار (P≤0.01) بود، درحالیکه اثر متقابل سطح روی در ارقام فقط برای صفات غلظت روی ریشه، روی شاخساره و روی دانه، معنی­دار (P≤0.01) بود. نتایج مقایسه میانگین تیمارها نشان داد که در شرایط کمبود روی، غلظت روی در ریشه ارقام روی-کارا (نیک­نژاد و بیات به­ترتیب 59 و 75/44 میلی­گرم درکیلوگرم) به­طور معنی­داری (P≤0.01) بیشتر از ارقام روی-ناکارا (هیرمند و کرج1 به­ترتیب 58/30 و 98/32 میلی­گرم درکیلوگرم) بود. همچنین غلظت روی دانه در رقم روی-­کارای بیات (82/28 میلی­گرم درکیلوگرم) به­طور معنی­داری (P≤0.01) از ارقام روی-­ناکارا (هیرمند و کرج1 به­ترتیب 95/24 و 85/22 میلی­گرم درکیلوگرم) بیشتر بود. محاسبه درصد کاهش صفات در شرایط کمبود روی نشان داد که میزان کاهش در عملکرد ماده خشک شاخساره، غلظت روی ریشه، غلظت روی دانه و میزان کلروفیل برگ در در ارقام روی-ناکارا بیشتر از ارقام روی-کارا بود. بطورکلی نتایج این تحقیق نشان داد که ارقام روی-کارا نسبت به ارقام روی-ناکارا در شرایط کمبود روی خاک، از توانایی بیشتری در رشد و تولید ماده خشک برخوردار بوده و قادرند میزان روی بیشتری در دانه ذخیره نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Absorbable Zinc Deficiency on some Physiological and Morphological Traits in Bread Wheat

نویسندگان [English]

  • Seyyed Mohsen Niazkhani 1
  • Babak Abdollahi Mandoulakani 2
  • Morad Jafari 3
  • MirHassan Rasouli-Sadaghiani 4
1 Ph.D student of Plant Breeding, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University
2 Associate professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University
3 Associate professor, Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University
4 Dept of Soil Sci. Urmia Uni
چکیده [English]

Abstract
Zinc is one of the most critical nutrient elements limiting the plant growth. To investigate the effects of soil Zn deficiency on some physiological and morphological traits in bread wheat (Triticum aestivum L.), a factorial experiment was conducted based on completely randomized design (CRD) with three replications in greenhouse. Zn-efficient (Bayat and Nik-nejhad) and inefficient (Hirmand and Karaj-1) cultivars were grown in Zn-deficit (0 mg kg-1 soil) and -adequate (5 mg kg-1 soil) soils. The studied traits were 1000 grain weight, number of grains per spike, chlorophyll content, grain, root and leaf Zn concentrations and some morphological traits. The results of variance analysis showed that all traits are significantly (P≤0.01) affected by Zn levels and cultivars, while the interaction effects of Zn level × cultivars were only significant (P≤0.01) for root, shoot and grain Zn concentrations. Mean comparisons of the interaction effects revealed that under soil Zn deficiency, the concentration of root Zn in Zn-efficient cultivars (Nik-nejhad: 59 mg kg-1, Bayat: 44.75 mg kg-1) is significantly (P≤0.01) more than those of Zn-inefficient cultivars (Hirmand: 30.58 mg kg-1, Karaj-1: 32.98 mg kg-1). The grain Zn concentration of Bayat (28.82 mg kg-1) cultivar was also significantly (P≤0.01) more than those of Zn-inefficient cultivars (Hirmand: 24.95 mg kg-1 and karaj-1: 22.85 mg kg-1). The estimation of trait decline percentage under soil Zn deficiency revealed more decrease for shoot dry weight, root and grain Zn concentrations and chlorophyll content in Zn-inefficient cultivars, compared to Zn-efficient ones. In conclusion, the results of the current study demonstrated that Zn-efficient bread wheat cultivars are able to produce more dry matter and accumulate more Zn in grains under soil Zn deficiency conditions.

کلیدواژه‌ها [English]

  • Bread Wheat
  • Number of seeds/spike
  • 1000 seed weight
  • Seed Zn concentration
  • Zinc uptake efficiency
References
‏ Cakmak I., Kalaycı, M., Ekiz, H., Braun, H.J., Kılınç, Y. and Yılmaz, A. 1999. Zinc deficiency as a practical problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Research, 60 (1-2): 175-188.
Ahmadi J., Khatibi M., Amirshekari H., and Amini Dehagi M. 2011. Evaluation of the effective morpho-physiological indices on the yield of spring wheat (Triticum aestivum L.) using multivariate statistical methods. Journal of Agronomy Sciences, 2(4): 55-66.
Ahmadikhah A., Narimani H., Rahimi M.M., and Vaezi B. 2010. Study on the effects of foliar spray of micronutrient on yield and yield components of durum wheat. Archives of Applied Science Research, 2(6): 168-176.
Alloway B.J. 2008. Zinc in Soils and Crop Nutrition (2nd Ed.). International Zinc Association and International Fertilizer Industry Association, Brussels, 135p.
Baghban-Tabiat S., and Rasouli-Sadaghiani M.H. 2012. Investigation of Zn utilization and acquisition efficiency in different wheat genotypes at greenhouse conditions. Journal of Science and Technology of Greenhouse Culture,3(2): 17-32. (In Persian)
Bushuk W., and Rasper V.F. 1994. Wheat: production, properties and quality. Springer Science and Business Media, London, 239p.
Cakmak I. 2000. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist, (146): 185-205.
Cakmak I. 2008. Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil 302 (1-2): 1-17.
Cakmak I., Ozturk L., Eker S., Torun B., Kalfa H.I. and Yilamaz A. 1997. Concentration of zinc and activity of copper/zinc superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency. Journal of Plant Physiology, (151): 91-95.
Chen W.R., He Z.L., Yang X.E., and Feng Y. 2009. Zinc efficiency is correlated with root morphology, ultra-structure, and antioxidative enzymes in rice. Journal of Plant Nutrition, (32): 287-305.
Choudhury R.P., Kumar A., and Garg A.N. 2006. Analysis of Indian mint (Mentha spicata) for essential, trace and toxic elements and its antioxidant behavior. Journal of Pharmaceutical and Biomedical Analysis, (41): 825-832.
Dong B., Rengel Z., and Graham R.D. 1995. Root Morphology of wheat genotype differing in Zn efficiency. Journal of. Plant Nutrition, (18): 2761–2773.
Ebrahimian E., and Bybordi A. 2011. Exogenous silicium and zinc increase antioxidant enzyme activity and alleviate salt stress in leaves of sunflower. Journal of Food, Agriculture and Environment, (9): 422-427.
Erenoglu B., Nikolic M., Römheld V. and Cakmak I. 2002. Uptake and transport of foliar applied zinc (65Zn) in bread and durum wheat cultivars differing in zinc efficiency. Plant and Soil, 241(2): 251-257. ‏
Ghasemi S., Khoshgoftarmanesh A.H., Sayed-Tabatabaei B.E. and Khaksar G. 2015. Expression level of ZIP1 and ZIP5 transporters in root and leaves of three different zinc-efficiency wheat cultivars. Journal of Plant Process and Function, 4(11): 23-32. (In Persian)
Graham R.D., Ascher J.S. and Hynes S.C. 1992. Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant and Soil, 146 (1-2): 241-250. ‏
Gupta B., Pathak G.C., and Pandey N. 2011. Induction of oxidative stress and antioxidant responses in Vigna mungo by zinc stress. Russian Journal of Plant Physiology, 58(1): 85-91.
Gurmani A.R., Din J.U., Khan S.U., Andaleep R., Waseem K., Khan A. and Hadyat-Ullah. 2012. Soil application of zinc improves growth and yield of tomato. International Journal of Agriculture and Biology, (14): 91–96.
Hacisalihoglu G., Hart J.J., Wang Y.H., Cakmak I. and Kochian L.V. 2003. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiology, (131): 595–602.
Hacisalihoglu, G., Hart, J.J. and Kochian, L.V. 2001. High-and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiology, 125(1), 456-463.
Haydon M.J., and Cobbett C.S. 2007. Transporters of ligands for essential metal ions in plants. New Phytologist, 174(3): 499-506. ‏
Hossain A., Silva J.A.T., Lozovskaya M.V., Zvolinsky V.P. and Mukhortov V.I. 2012. High temperature combined with drought affect rainfed spring wheat and barley in south-eastern Russia: yield, relative performance and heat susceptibility index. Journal of Plant Breeding and Crop Science, 4(11): 184-196. ‏
Kasirajan L., Boomiraj K., and Bansal K.C. 2013. Optimization of genetic transformation protocol mediated by biolistic method in some elite genotypes of wheat (Triticum aestivum L.). African Journal of Biotechnology 12(6): 531-538. ‏
Khavarinejad M.S., and Babajanov A.V. 2011. Identification of relationships of quantitative and morphological traits to spring wheat genotype yields in drought levels of Mazandaran (north of Iran). International Journal of Agricultural Sciences, 1(6): 329-339. ‏
Khoshgoftarmanesh A.H., Sadrarhami A., Sharifi H.R., Afiuni D. and Schulin R. 2009. Selecting Zinc-efficient wheat genotypes with high grain yield using a stress tolerance index. Agronomy Journal, 101(6): 1409-14016.
Li S., Zhou X., Huang Y., Zhu L., Zhang S., Zhao Y., Guo J., Chen J. and Chen R. 2013. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) gene family in maize. BMCB plant Biology, 13(1): 1-14. ‏
Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In Methods in enzymology. Academic Press, (148): 350-382.
Lindsary, W.L. and Norvell, W.A. 1978. Development of DTPA soil test for Zn, Fe, Mn and Cu. Journal of American Soil Science, 42: 421-428.
Lonergan P.F., Pallotta M.A., Lorimer M., Paull J.G., Barker S.J. and Graham R.D. 2009. Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytologist, 84(1): 168-179.
Mirzamasoumzadeh B., Ghalichechi S., Salami M., Karimi M. and Baghal Mohseni A. 2013. The study of wheat genotypes is planted in Ardabil using multivariate statistical methods. International Journal of Farming and Allied Sciences, 2(8): 188-189.
Mohammad W., Iqbal M.M., and Shah S.M. 1990. Effect of mode of application of zinc and iron on yield of wheat (CV. Pak-81). Sarhad Journal of Agriculture, 6(6): 615-618.
Movahhedi Dehnavi M., Modarres Sanavi A.M., Soroush-Zade A., and Jalali M. 2004. Changes of proline, total soluble sugars, chlorophyll (SPAD) content and chlorophyll fluorescence in safflower varieties under drought stress and foliar application of zinc and manganese. Dissert, 9 (1): 93-110.
Pandey N., Gupta B. and Pathak G.C. 2012. Antioxidant responses of pea genotypes to zinc deficiency. Russian Journal of Plant Physiology, 59 (2):198-205. ‏
Pearson J.N., and Rengel Z. 1997. Mechanisms of plant resistance to nutrient deficiency stress. In:  Basra, A.S. and Basra, R.K. (Ed.), Mechanisms of environmental stress resistance in plant, Amsterdam: Harwood Academic Publishers, pp. 213-240
Pfeiffer W.H., and McClafferty B. 2007. Harvest Plus: breeding crops for better nutrition. Crop Science, 47: 88-105. ‏
Rajaie M., and Ziaeyan A.H. 2009. Combined effect of zinc and boron on yield and nutrients accumulation in corn. International Journal of Plant Production, 3 (3): 435-440.
Rengel Z. 1995. Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. Journal of Plant Physiology, 147 (2), 251-256.
Sakal R., Verma M.K., Singh A.P., and Singh M.K. 1998. Relative tolerance of some rice varieties to zinc deficiency in calcareous soil. Journal of the Indian Society of Soil Science,36: 492–495.
Singh B., Natesan S.K.A., Singh B.K., and Usha K. 2005. Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88 (1): 36-44.
Thalooth A.T., Badr N.M., and Mohamed M.H. 2005. Effect of foliar spraying with Zn and different levels of phosphatic fertilizer on growth and yield of sunflower plants grown under saline conditions. Egyptian Journal of Agronomy, (27): 11-22.
Welch R.M. 1993. Zinc concentrations and forms in plants for humans and animals. In: Robson A.D. (Ed.), Zinc in soils and plants, Kluwer, Dordrecht, The Netherlands, pp. 183-195.
Wissuwa M., Ismail A.M., and Yanagihara S. 2006. Effects of zinc deficiency on rice growth and genetic factors contributing to tolerance. Plant Physiology, 142 (2): 731-741. ‏
Yilmaz A., Ekiz H., Torun B., Gultekin I., Karanlik S., Bagci S.A., and Cakmak I. 1997. Effect of different zinc application methods on grain yield and zinc concentration in wheat cultivars grown on zinc deficient calcareous soils. Journal of Plant Nutrition, 20 (4-5): 461-471.
Ziaeian A.H., and Malakouti M.J. 2002. Effects of Fe, Mn, Zn and Cu fertilization on the yield and grain quality of wheat in the calcareous soils of Iran. In: Horst W.J. et al., Plant NutritionDevelopments in Plant and Soil Sciences Book Series, pp. 840-841