بررسی ویژگی های زیستی خاک تالاب میقان اراک در جایگاههای پیوستن آبهای درونریز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه بوعلی همدان

2 دانشگاه بوعلی سینا

3 عضوهیات علمی پژوهشکده گل و گیاهان زینتی محلات

4 عضوهیات علمی گروه محیط زیست، دانشکده کشاورزی و محیط زیست، دانشگاه اراک

5 رئیس پژوهشکده گل و گیاهان زینتی محلات

چکیده

پایش و نگهداری تالآب‌ها در سرزمین‌های خشک بسیار مهم است. هدف پژوهش کنونی ارزیابی پیامد آب‌های رها شده در تالاب میقان اراک بر ویژگی‌های زیستی خاک بود. برای این کار از دو لایه (۰-۳۰ و ۳۰-۶۰ سانتیمتر) خاک تالاب در چهار جایگاه رهاسازی پساب شهری اراک، رودخانه شهراب، رودخانه فراهان و پساب کارخانه فرآوری سولفات‌سدیم به تالاب میقان در اردیبهشت و آبان سال ۱۳۹۳ نمونه‌برداری شد. فراوانی ریزجانداران کشت شدنی در خاک و همچنین تنفس پایه و برانگیخته و شناسه‌های بوم شناختی بهره متابولیک و ضریب میکروبی خاک اندازه‌گیری شد. فراوانی باکتری، باکتری روده‌ای و اکتینومیست در خاک جایگاه رهایی پساب شهری و فراوانی قارچ در خاک جایگاه رهایی رودخانه فراهان به‌ویژه در لایه رویین و در بهار بیشترین بود و لگاریتم فراوانی آنها به‌ترتیب به ۶، ۵۱/۵، ۹۲/۳ و ۸۵/۴ در هرگرم رسید. پساب کارخانه فرآوری سولفات به اندازه‌ای پیامد بدی داشته‌است که فراوانی قارچ و اکتینومیست در خاک این جایگاه ناچیز بود (لگاریتم آن‌ها به ترتیب کمتر از ۸۵/۱ و ۹۴/۲ در هر گرم خاک بود). از ویژگی‌های زیستی بررسی شده، تنفس برانگیخته بیشترین دگرگونی را داشته و پاسخدهنده‌ترین بود. تنفس پایه و برانگیخته و ضریب میکروبی خاک تالاب در جایگاه رهاسازی پساب شهری در آن به اندازه چشم‌گیری بیشتر بود و به ترتیب ۱۰۲/۰، ۶۸۸/۳ (mg CO2 g-1 soil day-1) و ۱۹۶/۰ (mg Cmic mg-1 Corg) می‌رسید. در برابر آن بهره متابولیک در خاک جایگاه رهاسازی رودخانه شهراب و پساب کارخانه بالاترین بود (به ترتیب ۶۰/۲ و ۵۲/۲ (mg C-CO2 g-1 Cmic h-1)) که نشان از تنش بالای ریزجانداران در این خاک­های شور دارد. پیامد رهاسازی پساب کارخانه فرآوری سولفات بر ویژگی‌های زیستی خاک تالاب کویری میقان زیان­بار و پیامد رهاسازی پساب شهری سودمند بود. رهاسازی پساب شهری می‌تواند مایه دگرگونی گوناگونی زیستی جانداران این تالاب شور و کویری شوند که نیاز به بررسی دارد.

کلیدواژه‌ها


عنوان مقاله [English]

The study of biological properties of soils in joining places of surface water-inflows in Meyghan playa in Arak

نویسندگان [English]

  • Mahboobeh Safari Sinegani 1
  • Ali Akbar Safari_Sinegan 2
  • Seyed Mohammad Banijamali 3
  • Mehrdad Hadipour 4
  • Pejman Azadi 5
1 Bu-Ali Sina University, Hamedan, Iran
2
3 Assistant professor of Ornamental Plant Rsearch center, Horticulture Institute, AREEO, Mahallat
4 Assistant professor of Faculty of Agriculture and Environmental Science, Arak University, Arak, Markazi
5 Assistant professor of Ornamental Plant Rsearch center, Horticulture Institute, AREEO; Mahallat
چکیده [English]

Healthy lifestyle on dry land depends on monitoring and maintenance of the ponds. The aim of this study was to assess the effects of surface water-inflows on biological characteristics of wetland soils around Arak Meyghan-Lake. Two soil layers (0-30 and 30-60 cm) in the 4 sites of surface water-inflows were sampled in May and November 2014. The sites were the release sites of treated-municipal-wastewater, Shahrab-River, Farah-River and sodium sulfate-processing plant wastewater. The number of culturable microorganisms in the samples was counted on solid media and the soil basal-respiration (BR), substrate-induced-respiration (SIR), metabolic-quotient (MQ) and microbial-coefficient (MC) were measured. The number of soil fungi in the site Farahan-River site and the numbers of soil bacteria, enteric bacteria and actinomycetes in the release site of municipal wastewater especially in topsoil and in spring were significantly higher compared to those in the 3 other sites (respectively 4.85, 6, 5.51 and 3.92 log numbers). The numbers of the studied microorganisms in soil in the release site of sulfate-plant wastewater were significantly low and the numbers of fungi and actinomycetes were negligible in the most samples. Soil SIR was the most susceptible and responsive index among the studied biological properties. The release of municipal-wastewater in the playa improved the soil biological indices like BR (0.102 mg CO2 g-1 soil day-1), SIR (3.688 mg CO2 g-1 soil day-1), and MC (0.196 mg Cmic mg-1 Corg) significantly. In contrast, the MQ was significantly high in the release site of Shahrab-River and sulfate-plant wastewater (2.60 and 2.52 (mg C-CO2 g-1 Cmic h-1) respectively), showing the negative effects and the higher salt tension in these sites. Although the release of municipal-wastewater in Meyghan-Lake had positive effects on soil biological characteristics, it may have negative effects on biodiversity of these salty soils.

کلیدواژه‌ها [English]

  • Culturable microorganisms
  • Metabolic quotient
  • Microbial coefficient
  • Soil respiration
References
Akhani Sinegani H. 1989. A contribution to the vegetation and flora of kavir-Meghan (NE, Arak). Journal of Science University Tehran, 18 (1-4): 75-84. (In Persian)
Alef K., and Nannipieri, P. 1995. Methods in Applied Soil Microbiology and Biochemistry. Academic Press, London, 608p.
Amoozegar M.A., and Zahraei S. 2007. Biodiversity of halophilic bacteria producing extracellular hydrolytic enzymes from Urmia Lake. Proceedings of the II International Conference on Environmental, Industrial and Applied Microbiology, Seville, Spain, 28 November–1, 382p.
Ananyeva N.D., Susyan E.A., and Gavrilenko E.G. 2011. Determination of the soil microbial biomass carbon using the method of substrate-induced respiration. Eurasian Soil Science, 44(11): 1215–1221.
Anderson T.H. 2003. Microbial eco-physiological indicators to assess soil quality. Agriculture Ecosystem Environment, 98:285–293.
Angole V., Mpuchane S., and Totolo O. 2006. Survival of faecal coliforms in four different types of sludage–amended soils in Botswana. European Journal of Soil Biology, 42: 208–218.
Babavalian H. 1989. Diversity of culturable moderate halophytic production of hydrolytic enzymes in Aran-Bidgol hypersaline lake in Iran. Islamic Azad University, Qom, Iran, Ma thesis. (In Persian)
Berry E.D., and Miller D.N. 2005. Cattle feedlot soil moisture and manure content: II. Impact on Escherichia coli0157. Journal of Environmental Quality, 34: 656–663.
Brookes P.C. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils, 19:269–279.
Dilly O. 2005. Microbial energetics in soils, in Buscot, Springer, Berlin, pp. 123–138.
Entry J.A., Leytem A.B., and Verwey s. 2005. Influence of solid dairty manure and compost with and without alum on survival of indicator bacteria in soil and on potato. Environmental Pollution, 138: 212–218.
Gao Y., Zhou P., Mao L., Zhi Y., Zhang C. and Shi W. 2010. Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution. Journal of Environmental Sciences, 22:1040–1048.
Gee G.W., and Bauder J.W. 1986. Particle size analysis. In: Klute A. (Ed), Method of Soil Analysis-Part 1. Physical and Mineralogical Methods. Soil Science Society of America, Madison, Wisconsin USA., pp. 383-411.
Ghadimi F. 2014. Assessment of the sources of chemical elements in sediment from Arak Mighan Lake. International Journal of Sediment Research, 29: 159-170.
Ghahroudi Tali M., Mirzakhani B., Asgari A. 2012. Surveying desertification in Iranian wetlands (Case study: Meyghan wetland). Journal of Natural Environmental Hazards, 21(4): 97-112. (In Persian)
Hejazi Y., Ahangari I., and Haday M. 2015. Participation of environmental NGOs in conservational activities: evidences from Kani Barazan Wetland in Mahabad. Journal of Environmental Studies, 40(4): 989-997. (In Persian)
Kafilzadeh F., Javid H., and Kargar M. 2007. Isolation of halophilic and halotolerant microorganisms from the bakhtegan lake and the effect of physicochemical factors on their Frequency. Journal of Water and Wastewater, 18(3): 81-87. (In Persian)
Khan S., Cao Q., Zheng Y.M., Huang Y.Z., and Zhu Y.G. 2008. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Review of Environmental Pollution, 152 (3):686-92.
Klose S., Wernecke K.D., and Makeschin F. 2004. Microbial activities in forest soils exposed to chronic depositions from a lignite power plant. Soil Biology and Biochemistry, 36:1913–1923.
Kumpiene J., Guerri G., Landi L., Pietramellara G., Nannipieri P., and Renella G. 2009. Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb-and Cu-contaminated soil. Ecotoxicology and Environmental Safety, 72:115–119.
Lang N.L., and Smith S.R. 2007. Influence of soil type, moisture content and biosolids application on the fate of Escherichia coli in agricultural soil under controlled laboratory conditions. Journal of Applied Microbiology. 103:2122-2131.
Lang N.L., Bellett–Travers M.D., and Smith S.R. 2007. Field investigations on the survival of Escherichia coli and presence of other enteric micro–organisms in biosolids–amended agricultural soil. Journal of Applied Microbiology, 103: 1868–1882.
Mehrshad M., Amoozegar M. A., Yakhchali B., and Shahzedeh Fazeli A. 2012. Biodiversity of moderately halophilic and halotolerant bacteria in the western coastal line of Urmia lake. Biological Journal of microorganisems, 2: 49-70. (In Persian)
Nelson D. W., and Somers L. E. 1996. Total carbon, organic carbon and organic matter of soil analysis-Part 3. Chemical Methods, Madision, Wisconsin. USA, pp. 961-1010.
Rahban R. 2008. Diversity of culturable moderate halophytic production of hydrolytic enzymes in of the lake Houz Sultan in Iran. Islamic Azad University, Tehran, Iran, Ma thesis. (In Persian)
Rattan R.K., Datta S.P., Chhonkar P.K, Suribabu K., and Singh A.K. 2005. Long Term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater–a case study. Agriculture, Ecosystems and Environment, 109: 310-22.
Renella G., Mench M., Gelsomino A., Landi L., and Nannipieri P. 2005. Functional activity and microbial community structure in soils amended with bimetallic sludges. Soil Biology and Biochemistry, 37:1498–1506.
Rodriguez-Valera F. 1988. Characteristics and microbial ecology of hypersaline environments. In: Rodriguez-Valera F. (Ed). Halophilic Bacteria, Boca Raton, CRC Press. FL, 1: 3–30.
Safari Sinegani A.A. 2015. Soil Organic Matter. The first publication. Bu-Ali Sina University Press. 364p. ISBN- 978-600-128-190-7. (In Persian)
Safari Sinegani A.A., and Maghsoudi J. 2011. The effect of soil water potential on survival of fecal coliforms in soil treated with organic wastes under laboratory conditions. African Journal of Microbiology Research, 5(3): 229-240.
Safari Sinegani A.A., and Safari Sinegani M. 2017. Chemical properties of suface water-inflows and their effects on soils of Meyghan Lake in Arak. Journal of Water and Soil Conservation, 24(4):123-142.
Safari Sinegani A.A., and Safari Sinegani M. 2018. Chemical fractionation and bioavailability of Fe, Mn, Pb, and Cd in soils around Meyghan Lake, Arak, Iran. International Journal of Environmental Science and Technology. s13762-018-1725-8.
Safari Sinegani A.A., Sharifi Z., and Safari Sinegani M. 2010. Methods in Applied Microbiology. Bu-Ali Sina University Press. 525 p. ISBN- 978-600-128-028-3. (In Persian)
Shukurova N., Pen-Mouratov S., and Steinbergera Y. 2006. The influence of soil pollution on soil microbial biomass and nematode community structure in Navoiy Industrial Park, Uzbekistan­. Environment International, 32: 1-11.
Stocker M.D., Pachepsky Y.A., Hill R.L., and Sheltona D.R. 2015. Depth-dependent survival of Escherichia coli and Enterococci in soil after manure application and simulated rainfall. Applied and Environmental Microbiology, 81(14): 4801-4808
Tohidifar M., Kaboli M., Karami M., and Sadough M.B. 2009. Observations on Breeding Birds of Meyghan Wetland and Adjacent Areas, Markazi Province, West-Central Iran. Podoces, 4(2): 124–129.
Van Elsas J.D., Alexander V.S., Rodrigo C., and Jack, T. 2010. Survival of Escherichia coli in the environment: fundamental and public health aspects. Journal of ISME, 5(2): 173–183.
Van Elsas J.D., Jansson J.K., and Trevors J.T. 2007. Modern Soil Microbiology (2nd Ed). CRC Press: USA.
Zalaghi R., and Safari-Sinegani A.A. 2014. The importance of different forms of Pb on diminishing biological activities in a calcareous soil. Chemistry and Ecology, 30:446-462.
Zhang P., Li L., Pan G., and Ren. J. 2006. Soil quality changes in land degradation as indicated by soil chemical, biochemicaland microbiological properties in a karst area of southwest Guizhou, China. Environmental Geology, 51:609–619.