تأثیر حشره‌کش‌های دیازینون، کلروپیریفوس و ایمیداکلوپرید بر برخی از شاخص‌های زیستی خاک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی سابق کارشناسی ارشد بیولوژی و بیوتکنولوژی خاک دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

2 بیولوژی خاک- دانشگاه محقق اردبیلی

3 دانشگاه محقق اردبیلی

4 گروه منابع طبیعی، دانشکده کشاورزی و منابع طبیعی دانشگاه محقق اردبیلی

چکیده

مصرف بی­رویه سموم دفع آفات در سال‌های اخیر و ادامه آن در آینده ممکن است اثرات زیانبار بر جامعه میکروبی خاک، به عنوان شاخص سلامت خاک و یکی از اجزای اصلی محیط زیست، داشته باشد. هدف از این مطالعه، بررسی تأثیر سه حشره‌کش پرمصرف (دیازینون، کلروپیریفوس و ایمیداکلوپرید) بر شاخص‌های اکوفیزیولوژیک و شیمیایی خاک بود. آزمایش به صورت فاکتوریل و در قالب طرح کاملاً تصادفی انجام شد که شامل فاکتور حشره‌کش در چهار سطح (سه نوع حشره‌کش متفاوت به همراه خاک شاهد، بدون مصرف حشره‌کش) و فاکتور زمان در سه سطح (قبل، سه ماه و شش ماه پس از کاربرد آفت‌کش) بود. غلظت حشره‌کش‌ها (1/0، 1 و 67/0) میلی­گرم در هر کیلوگرم خاک به ترتیب برای ایمیداکلوپرید، دیازینون و کلروپیریفوس بود. برخی از شاخص‌های زیستی و اکوفیزیولوژیک خاک در ابتدای آزمایش، سه و شش ماه پس از شروع آزمایش اندازه‌گیری شد. نتایج نشان داد که در اثر کاربرد حشره‌کش‌ها پس از گذشت سه ماه، شاخص‌های زیستی شامل فعالیت آنزیم دهیدروژناز، بهرة متابولیکی، تنفس پایه، تنفس برانگیخته و همچنین کربن آلی نسبت به شاهد به ترتیب 2/92 %، 7/46 %، 7/24 %، 8/15 % و 61/7 % کاهش داشته و شاخص‌های فعالیت آنزیم اوره‌آز، کربن زیتوده میکروبی، نیتروژن زیتوده میکروبی، نسبت کربن به نیتروژن زیتوده و بهرة میکروبی خاک نسبت به شاهد 67/6 %، 1/32 %، 6/15%، 5/16% و 9/58 % افزایش داشت. همچنین نتایج نشان داد که در بین حشره‌کش‌های مورد استفاده در این تحقیق کلروپیریفوس بیشترین و دیازینون کمترین تأثیر منفی را بر شاخص‌های اندازه‌گیری شده داشته است. بکارگیری حشره‌کش‌های دیازینون، کلروپیریفوس و ایمیداکلوپرید حداقل در کوتاه مدت تأثیر منفی بر شاخص‌های اکوفیزیولوژیک خاک دارد. همچنین حساس‌ترین شاخص‌ها در تعیین تأثیر منفی حشره‌کش‌ها بر جامعۀ میکروبی خاک، فعالیت آنزیم دهیدروژناز، بهرة متابولیکی، تنفس برانگیخته و تنفس پایه بودند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Diazinon, Chlorpyrifos and Imidacloprid Insecticides on some Biological Indices of Soil

نویسندگان [English]

  • Akhtar Eghtesadi 1
  • Akbar Ghavidel 2
  • Ali Ashraf Soltani Toolarood 3
  • Meraj Sharari 4
1 Former M.A student Soil Biology and Biotechnology college of Agriculture and Natural Resources of University Mohaghegh Ardabili
2 Department of Soil Science and Engineering, Faculty of Agriculture and Natural Science, University of Mohaghegh Ardabili
3 هیات علمی
4 Department of Natural Resources, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili
چکیده [English]

The excessive use of pesticides in recent years and their continuation in the future may have harmful effects on the microbial population of the soil, as an indicator of soil health and one of the main components of the environment. The purpose of this study was to investigate the effect of three mostly used insecticides (Diazinon, Chlorpyrifos and Imidacloprid) on ec-ophysiological and chemical indices of soil. The experiment was conducted as a factorial in a completely randomized design which included the pesticide factor at four levels (three insecticides plus control soil) and time factor at three levels (before, three months and six months after pesticide application). Concentrations of insecticides (0.1, 1 and 0.67) mg per kilogram of soil were used for imidacloprid, diazinon, and chlorpyrifos, respectively. Some biological and ec-ophysiological indices of the soil were measured at the beginning of the experiment, three and six months after the beginning of the experiment. The results showed that, the application effect of insecticides after three months affected the biological indices including dehydrogenase enzyme activity, metabolic quotient, basal respiration, substrate-induced respiration and also organic carbon decreased compared to the control -92.2%, -46.7%, -24.7%, 15.8% and -7.61%, respectively and urease enzymes activity, microbial biomass carbon, microbial biomass nitrogen, carbon to nitrogen ratio and soil microbial quotient increased compared to control 6.67%, 32.1%, 15.6%, 16.5% and 58.9. Also, the results showed that among the insecticides Chlorpyrifos and Diazinon had the highest and the least negative effect on the indices, respectively. The application of insecticides Diazinon, Chlorpyrifos and Imidacloprid at least in the short term, had a negative effect on soil ecophysiological indices and the most sensitive indices for determining the negative impact of insecticides on the soil microbial community were the dehydrogenase enzyme activity, metabolic quotient, substrate-induced respiration and basal respiration.

کلیدواژه‌ها [English]

  • Pesticides
  • Soil quality index
  • Soil enzymatic activity
  • Soil biological activity
  • Soil quality
Ali Asgharzad N.1385. Laboratory methods in soil biology. Tabriz University Publications, 546p.(In Persian)
Austin A. T., Yahdjian L., Stark J. M., Belnap J., Porporato A., Norton U., and Schaeffer S. M. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia, 141(2): 221-235.‏
Bi J. L., and Toscano N. C. 2007. Current status of the greenhouse whitefly, Trialeurodes vaporariorum, susceptibility to neonicotinoid and conventional insecticides on strawberries in southern California. Pest Management Science, 63(8): 747-752.‏
Briceño G., Palma G., and Durán N. 2007. Influence of organic amendment on the biodegradation and movement of pesticides. Critical Reviews in Environmental Science and Technology, 37(3): 233-271.‏
Bhattacharya A., and Sahu S. K. 2013. A comparison of effect of dimethoate and imidacloprid on soil respiration (carbon dioxide evolution from soil). Journal of Biodiversity and EnvironmentalSciences, 3(6): 56-63.‏
Baligar V. C., Wright R. J., and Hern J. L. 2005. Enzyme activities in soil influenced by levels of applied sulfur and phosphorus. Communications in Soil Science and Plant Analysis, 36(13-14): 1727-1735.‏
Chen C., Wang Y., Zhao X., Wang Q., and Qian Y. 2014. Comparative and combined acute toxicity of butachlor, imidacloprid and chlorpyrifos on earthworm, Eisenia fetida. Chemosphere, 100: 111-115.‏
El Bakouri H., Morillo J., Usero J., and Ouassini A. 2008. Potential use of organic waste substances as an ecological technique to reduce pesticide ground water contamination. Journal of Hydrology, 353(3-4): 335-342.‏
Franco-Andreu L., Gómez I., Parrado J., García C., Hernández T., and Tejada, M. 2016. Behavior of two pesticides in a soil subjected to severe drought. Effects on soil biology. Applied Soil Ecology, 105: 17-24.‏
‏Gupta P .K . 2004. Soil, plant, water and fertilizer analysis. Agrobios. India.
Goswami M. R., Pati U. K., Chowdhury A., and Mukhopadhyay A. 2013. Studies on the effect of cypermethrin on soil microbial biomass and its activity in an alluvial soil. international journal of agriculture and food science, 3(1): 1-9.‏
Giller K. E., Witter E. E., and McGrath S. P. 1999. Assessing risks heavy metal toxicity in agricultural soils. Human and Ecological Risk Assessment, 5: 683-689.
Holvoe  K. 2006. Monitoring and modeling the dynamic fate and behavior of pesticides in river   systems at catchment scale. PhD thesis. Ghent University, Belgium, 242p.
Imani S. 2004. ASurvery on pesticides multi residue and multi class detection in selected vegetable. Ph.D. Thesis, Tehran Science and Research branch, Islamic Azad University, Tehran, Iran.
Jones Jr J. B. 2001. Laboratory guide for conducting soil tests and plant analysis. CRC press. LLC.U.S.
Khodadadi M. A. R. Y. A. M., Samadi M. T., Rahmani A. R., Maleki R., Allahresani A., and Shahidi R. 2010. Determination of organophosphorous and carbamat pesticides residue in drinking water resources of Hamadan in 2007. Iranian Journal of Health and Environment, 2(4): 250-257.‏
Kulbhaje S., Shweta N., and Keshavkant S. 2017. Metalloid and insecticides-induced modifications in the key soil enzymes regulating biogeochemical cycling. Journal of Applied Environmental and Biological Sciences, 7(2): 52-61.‏
Liu B., Gumpertz M. L., Hu S., and Ristaino J. B. 2007. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biology and Biochemistry, 39(9): 2302-2316.‏
Leoni V. D'., Alessandro L.d., Merolli S., Hollick C., Collison R. 1981. The soil degradation of chlorpyrifos and the significance of its presence in the superficial water in Italy. Agrochimica (Italy)
Lock K., and Janssen C. R. 2005. Influence of soil zinc concentrations on zinc sensitivity and functional diversity of microbial communities. Environmental Pollution, 136(2): 275-281.‏
Mansourzadeh M., and Raiesi F. 2012. The effect of Eradican (EPTC) on microbial biomass C and N, and urease and arylsulphatase activities in a calcareous soil under field conditions. JWSS-Isfahan University of Technology, 16(59): 153-167.‏
Nelson D. W., and Sommers L. 1982. Total carbon, organic carbon, and organic matter 1. Methods of soil Analysis. Part 2. Chemical and Microbiological Properties, (methodsofsoilan2), 539-579.‏‏
Nannipieri P., Kandeler E., and Ruggiero P. 2002. Enzyme activities and microbiological and biochemical processes in soil. Enzymes in the Environment. Marcel Dekker, New York, 1-33.‏
Nguyen D. B., Rose M. T., Rose T. J., Morris S. G., and Van Zwieten L. 2016. Impact of glyphosate on soil microbial biomass and respiration: a meta-analysis. Soil Biology and Biochemistry, 92: 50-57.‏
Rahmansyah M., Antonius S., and Sulistinah N. 2009. Phosphatase and urease instability caused by pesticides present in soil improved by grounded rice straw. ARPN Journal of Agricultural and Biological Science, 4(2): 56-62.‏
Rakhshani A., and Taheri A. H. 1385. Principles of agricultural toxicology (volume ii of fungicides, bacteria and biological nematodes). Publications Tehran CultureComprehensive, 446 p. (In Persian)
Rastgar M. A., and Mousavi M. R. 1376. Pesticides in agriculture, Publications Barahmand Islamic Azad University, Varamin unit.736p. (In Persian)
Schinner F., Öhlinger R., Kandeler E., Margesin R. 2012. Methods in soil biology: Springer Berlin Heidelberg.
Singh J., and Singh D. K. 2005. Bacterial, azotobacter, actinomycetes, and fungal population in soil after diazinon, imidacloprid, and lindane treatments in groundnut (Arachis hypogaea L.) fields. Journal of Environmental Science and Health Part B, 40(5): 785-800.‏
Saleh Zadeh A. 2006. Pesticide and how they work. Published by Hamedan University of Medical Sciences of Hamedan, 69-55. (In persian)
Sorouri Zanjani R., Mir-Esmaili S. M., Latifi A. M., and ValiPour E. 2009. Isolation and identification of a type strain bacteria with the highest ability to produce organophosphorus acid anhidrase. Journal of Mazandaran University of Medical Sciences, 18(68): 19-26.
Tejada M., García C., Hernández T., and Gómez I. 2015. Response of soil microbial activity and biodiversity in soils polluted with different concentrations of cypermethrin insecticide. Archives of Environmental Contamination and Toxicology, 69(1): 8-19.‏
Tejada M., García-Martínez A. M., Gómez I., and Parrado J. 2010. Application of MCPA herbicide on soils amended with biostimulants: short-time effects on soil biological properties. Chemosphere, 80(9): 1088-1094.‏
Tejada M., Gómez I., and del Toro M. 2011. Use of organic amendments as a bioremediation strategy to reduce the bioavailability of chlorpyrifos insecticide in soils. Effects on soil biology. Ecotoxicology and Environmental Safety, 74(7): 2075-2081.‏
Thabit T. M. A. M., and El-Naggar M. A. H. 2013. Diazinon decomposition by soil bacteria and identification of degradation products by GC-MS. Soil and Environment, 32(2): 96-102.‏
Vischetti C., Monaci E., Cardinali A., Casucci C., and Perucci P. 2008. The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere, 72(11): 1739-1743.‏
Vig K., Megharaj M., Sethunathan N., and Naidu R. 2003. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review. Advances in Environmental Research, 8(1): 121-135.