کارایی سیستم های RS و GIS در برآورد فرسایش بادی خاک ساحل شرقی دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی دانشگاه تبریز

2 گروه علوم خاک ، دانشکده کشاورزی ، دانشگاه تبریز ، تبریز ، ایران

3 گروه سنجش از دور و GIS ، دانشگاه تبریز ، تبریز ، ایران

چکیده

فرسایش بادی یکی از جنبه­های مهم تخریب اراضی در مناطق خشک و نیمه­خشک بوده و چالشی جدی در برابر تولید پایدار و مدیریت اراضی محسوب می‌شود. در این تحقیق، برای برآورد فرسایش بادی خاک در ساحل شرقی دریاچه ارومیه، از مدل ارزیابی جامع استفاده شد که با دقت کلی ۱۲/۶۶٪، موثر بوده و در آن از شش عامل مهم فرسایش پذیری بادی خاک، شاخص­های خشکی و پوسته خاک، پوشش گیاهی، شدت باد و تعداد روزهای برفی استفاده می­شود. برای بدست آوردن فرسایش بادی خاک، نمونه­ها بصورت تصادفی از عمق10-0 سانتی­متر در 153 نقطه از سه لایه ارتفاعی (1271-1273 و 1273-1275 و 1275-1278متر ارتفاع از سطح دریا) در سایت­های انتخابی تهیه و جهت بررسی ویژگی­های فیزیکی و شیمیایی، به آزمایشگاه منتقل گردید. از روش AHP نیز برای تعیین وزن هر عامل در یک سیستم چند معیاری طی سال­های 2017-2005 استفاده و پوشش گیاهی بسیار ضعیف منطقه با تغییرات سالیانه ناچیز، به عنوان مهمترین عامل موثر در مدل فرسایش بادی شناخته شد. نتایج نشان داد فرسایش زیاد بهترین دقت (۷۶/0)، فرسایش کم (۶۴/0) و فرسایش متوسط (۵۷/0) را نشان می­دهند و پایین بودن دقت فرسایش کم و متوسط، به علت وجود نقاط مشاهده میدانی بیشتر در مناطق فرسایشی شدید است که بر صحت نتایج ارزیابی تأثیر می­گذارد. صحت مدل ارائه شده در تبین کلاس فرسایش بادی شدید بیشتر از سایر کلاس­ها بوده و بیانگر قرار گرفتن ۵۶/۴۵٪ از منطقه مورد مطالعه در کلاس فرسایش بادی شدید (۵۳/۰< WEI) است. درصورتیکه، 97/23% دارای فرسایش متوسط (۵۳/۰>WEI> ۴۸/۰) و 47/30 درصد دارای فرسایش کم (۴۸/۰> WEI) می­باشد. در نتیجه، صحت ارزیابی کلی مدل فرسایش بادی خاک ایجاد شده در این تحقیق می­تواند کاربرد خوبی در منطقه شرق دریاچه ارومیه داشته باشد. کل نتایج بیانگر روند کاهش شدت فرسایش از مناطق میانی به شمالی و جنوبی است.

کلیدواژه‌ها


عنوان مقاله [English]

Performance of RS and GIS systems in estimating wind erosion in east coast of Urmia Lake

نویسندگان [English]

  • saghar chakherlou 1
  • Asghar Jafarzadeh 2
  • Abbas Ahmadi 2
  • Bakhtiar Feizizadeh 3
  • Farzin Shahbazi 2
1 Faculty agricultural, university of tabriz
2 1Soil Science Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
3 2Department of Remote Sensing and GIS, University of Tabriz, PTabriz, Iran
چکیده [English]

Wind erosion is one of the important aspects of land degradation in arid and semi-arid regions and is a serious challenge to sustainable production and land management. In this study, a comprehensive evaluation model is developed which proves to be effective with an overall precision of 66.12% to estimate soil erosion on the eastern shore of Urmia Lake. Six critical factors including soil erodibility, aridity index, soil crustal indices, vegetation fraction, wind field intensity and snow cover days are employed to model the wind erosion. 153 soil samples randomly were collected from 0-10 cm depth points from three elevation layers (1271-1273, 1273-1275 and 1275-1278 meter above sea level) and transfer to laboratory for physical and chemical analyzing. The AHP method is applied to determine the weight of each factor in a multi-criteria system, during the years 2005–2017 and poor vegetation cover with low annual variations was identified as the most important factor affecting the wind erosion model. Results show that high, low and moderate erosion classes have 0.76, 0.64 and 0.57 overall accuracy, respectively. The reason of low accuracy of low and medium erosion classes was the lower number of field observation points of these classes. The results shows that 45.56% of the study area classified as severe wind erosion class (WEI <0.53), while 23.97% has erosion Moderate (0.48> WEI> 0.53) and 30.47% have been labeled as low erosion (0.48> WEI). Consequently, the accuracy of the overall assessment of soil erosion model developed in this study is acceptable and could be applied in the eastern part of Lake Urmia. Results shows the descending trend in erosion intensity from the middle parts to the north and south parts of the study area.
 

کلیدواژه‌ها [English]

  • Comprehensive evaluation model
  • Erosion accuracy
  • AHP
Basso F., Bove E., Dumontet S., and Taberner M. 2000. Evaluating environmental sensitivity at the basin scale through the use of geographic information systems and remotely sensed data: an example covering the Agri basin (Southern Italy). Catena, 40:19–35.
Bulygina N.S., Nearing, M.A., Stone, J.J., and Nichols, NH. 2007. DWEPP: a dynamic soil erosion model based on WEPP source terms. Earth Surf Proc Land, 32: 998–1012.
Buschiazzo D.E., and Zobeck T.M. 2008. Validation of WEQ, RWEQ and WEPS wind erosion for different arable land management systems in the Argentinean Pampas. Earth Surf Proc Land. 33:1839 1850.Cornelis WM, Gabriels D. 2003. A simple low-cost sand catcher for wind-tunnel simulations. Earth Surf Proc Land, 28: 1033–1041.
Dabojani D., Mithun D., and Kanti K.K. 2014. River change detection and bankline erosion recognition using remote sensing and GIS. Forum Geografic, XIII (1): 12–17.
Diaz-Nigenda E., Tatarko J., Jazcilevich A.D., Garcia A.R., Caetano E., and Ruiz-Suarez L.G. 2010. A modelling study of Aeolian erosion enhanced by surface wind confluences over Mexico City. Aeolian Research, 2: 143-157.
Dong ZB. Wang HT. Liu XP. And Wang XM. 2004. The blown sand flux over a sandy surface: a wind tunnel investigation on the fetch effect. Geomorphology, 57: 117–127.
Du HQ. Xue X., Wang T., and Deng XH. 2015. Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Research, 17: 193–204.
Duiker S., Flanagan D., and Lal R. 2001. Erodibility and infiltration characteristics of five major soils of southwest Spain. Catena, 45: 103–121.
Feng G.L., Sharratt B., and Vaddella V. 2013. Wind-blown soil crust formation under light rainfall in a semiarid region. Soil Tillage Research, 128: 91–96.
Ferrick M.G., and Gatto L.W. 2005. Quantifying the effect of a freeze–thaw cycle on soil erosion: laboratory experiments. Earth Surf Proc Land, 30: 1305–1326.
Fisher J.B., Debiase T.A., Qi Y., Xu M., and Goldstein A.H. 2005. Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling and Software, 20: 783–796.
Gee G.W, and Or D. 2002. Particle size analysis. In: Dane J.H., G.C. Topp, (Editors). Methods of soil analysis. Part 4. Physical methods. Soil Science Society of America. Madison (WI), p. 255–293.
Gomez L., Arrue J.L., Lopez M.V., Sterk G., Richard D., Gracia R., Sabre M., Gaudichet A., and Frangi J.P. 2003. Wind erosion in a semiarid agricultural area of Spain the WELSONS project. Catena, 52: 235-256.
Guo B., Zhou Y., Zhu J.F., Liu W.L., Wang F.T., Wang L.T., and Jiang L. 2015. An estimation method of soil freeze–thaw erosion in the Qinghai–Tibet Plateau. Natural Hazards, 78: 1843–1857.
Hagen L.J., VanPelt S., and Sharratt B. 2010. Estimating the saltation and suspension components from field wind erosion. Aeolian Research, 1: 147-153.
Hevia G.G., Mende, M., and Buschiazzo D.E. 2007. Tillage affects soil aggregation parameters linked with wind erosion. Geoderma, 140: 90–96.
Huete A.R., and Tucker C.J. 1991. Investigation of soil influences in AVHRR red and near infrared vegetation index imagery. International Journal of Remote Sensing, 12: 1223–1242.
Huo Z.L., Dai X.Q., Feng S.Y., Kang S.Z., and Huang G.H. 2013. Effect of climate change on reference evapotranspiration and aridity index in arid region of China. Journal of Hydrology, 492: 24–34.
Kemper W.D and Rosenau R.C. 1986. Aggregate stability and size distribution. In: Klute (Ed). Method os soil analysis. Part 1. 2nd ed. ASA and SSSA, Modison, WI. 425-442.
Khanjani Safdar A., Ahmadi A and Sadeghzadehreihan M.E. 2015. Determination of Crop Management Factor at Different Growth Stages of Rainfed Chickpea in Semiarid Region for Using in USLE Model: A Case Study in Tikmeh Dash of East Azerbaijan. Applied Soil Research, 3(1): 78-88. (In Persian)
Li A.N., Wang A.S., Liang S.L., and Zhou W.C. 2006. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS: a case study in the upper reaches of Minjiang River, China. Ecological Modelling, 192:175–187.
Li FR., GAO CY. Zhao HL. And Li XY. 2002. Soil conservation effectiveness and energy efficiency of alternative rotations and continuous wheat cropping in the Loess Plateau of northwest China. Agriculture, Ecosystems and Environment, 91: 101–111.
Li J.R., Okin G.S., Alvarez L., and Epstein H. 2007. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry, 85: 317–332.
Liu Q., Yang Z.F., Cui B.S., and Sun T. 2010. The temporal trends of reference evapotranspiration and its sensitivity to key meteorological variables in the Yellow River Basin, China. Hydrological Processes, 24: 2171–2181.
Lopez M.V., Dios Herrero J.M, Hevia G.G, Gracia, R., and Buschiazzo D.E. 2007. Determination of the wind-erodible fraction of soils using different methodologies. Geoderma, 139: 407–411.
Miao C.Y., He B.H., and Chen X.Y. 2004. Analysis on correlativity of soil erodibility factors of USLE and WEPP models. Soil Water Conser China, 6: 23–26.
Munson SM., Belnap J., and Okin G. 2011. Responses of wind erosion to climate induced vegetation changes on the Colorado Plateau. P Natl Acad Sci U S A. 108: 3854–3859.
Nimmo J.R., and Perkins K.S. 2002. Aggregate Stability and size distribution. Methods of soil analysis, part4: 317-328.
Page A.L.V., and Keeney M.R.H. 1992. Method of Soil Analysis. American Society of Agronomy. Madison WI. USA.
Raei., Ahmadi A., Neyshaburi M.A., Ghorbani A and Asadzadeh F. 2020. Determination of soil wind erodibility in eastern urmia lake and its relationship with soil physicochemical properties. Applied Soil Research, 8(2): 82-98. (In Persian)
Seeger M., and Ries J.B. 2008. Soil degradation and soil surface process intensities on abandoned fields in Mediterranean mountain environments. Land Degradation and Development, 19: 488–501.
Solomon S., Qin, D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., and Miller H.L. 2007. Climate change 2007: the physical science basis. Contribution of Working Groups I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge (UK): Cambridge University Press; p. 104–108.
Sparks D. and Bartels J. 1996. Methods of soil analysis: Part3. Chemical methods. Soil Science Society of America Book Series. Madison, Wisconsin. USA. Pp 1390.
Steffens M., Koebl A., Giese M., and Kcogel-Knabner I. 2009. Spatial variability of top soils and vegetation in a grazed steppe ecosystem in Inner Mongolia (PR China). Journal of Plant Nutrition and Soil Science, 172: 78–90.
Tegen I., Werner M., Harrison S.P., and Kohfeld K.E. 2004. Relative importance of climate and land use in determining present and future global soil dust emission. Geophysical Research Letters, 31: 1-4.
Tejada M., and Gonzalez JL. 2006. The relationships between erodibility and erosion in a soil treated with two organic amendments. Soil and Tillage Research, 91: 186–198.
Veihe A. 2002. The spatial variability of erodibility and its relation to soil types: a study from northern Ghana. Geoderma, 106: 101–120.
Wang H., Mason J.A., and Balsam W.L. 2006. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess. Geoderma, 136: 388–400.
Webb N.P., Strong C.L., Chappell A., Marx S.K., and McTainsh G.H. 2013. Soil organic carbon enrichment of dust emissions: magnitude, mechanisms and its implications for the carbon cycle. Earth Surf Process Land, 38: 1662–1671.
Xu J.X. 2006. Sand-dust storms in and around the Ordos Plateau of China as influenced by land use change and desertification. Catena, 65: 279–284.
Yan Y.C., Xin X.L., Xu X.P., Wang X., Yang G.X., Yan R.R., and Chen B.R. 2013. Quantitative effects of wind erosion on the soil texture and soil nutrients under different vegetation coverage in a semiarid steppe of northern China. Plant and Soil, 369: 585–598.
Yan Y.C., Xu X.L., Xin X.P., Yang G.Y., Wang X., Yan R.R., and Chen B.R. 2011. Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of Northern China. Catena, 87: 351–356.
Zamani S., and Mahmoodabadi M. 2013. Effect of particle –size distribution on wind erosion rate and soil erodibility. Archives of Agronomy and Soil Science, 59(12): 1743-1753.
Zhang K.L., Li S., Peng W., and Yu B. 2004. Erodibility of agricultural soils on the loess plateau of china. Soil and Tillage Research, 76: 157–165.
Zhou Y., Guo B., Wang S.X., and Tao H.P. 2015. An estimation method of soil wind erosion in Inner Mongolia of China based on geographic information system and remote sensing. Journal of Arid Land, 7: 304–317.