تأثیرات زغال‌زیستی باگاس نیشکر و زئوپلانت بر ویژگی‌های فیزیکی خاک‌های آلوده به هیدروکربن‌های نفتی (TPHs)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 خاکشناسی، دانشکده کشاورزی، دانشگاه شهید چمران اهواز

2 هیئت علمی- دانشگاه شهید چمران اهواز

چکیده

استخراج و بهره­برداری از ترکیبات نفتی و فرآورده­های آن، منجر به آلودگی خاک و محیط­زیست پیرامونی می­گردد. بنابراین، اصلاح خاک­های آلوده به مواد نفتی از اهمیت شایانی برخوردار است. در این پژوهش، تأثیرات زغال­زیستی باگاس نیشکر و زئوپلانت به­عنوان مواد اصلاح­کننده، بر برخی از ویژگی­های خاک­های آلوده به هیدروکربن­های نفتی در محدوده میدان نفتی اهواز بررسی گردید. برای این منظور، پس از بازدیدهای میدانی و نمونه­برداری به روش سیستماتیک کاملا تصادفی درون بلوک، نمونه­های خاک به گلدان­های 7 کیلوگرمی منتقل شد و تیمارهای آزمایشی در سطوح 2، 4 و 6 درصد وزنی به خاک افزوده شد. سپس رطوبت در سطح 25 و 50 درصد FC به خاک اعمال گردید و نمونه­ها به مدت 100 روز انکوباسیون شدند. پس از اتمام انکوباسیون، جرم ویژه ظاهری، تخلخل، ظرفیت نگهداشت رطوبت خاک، درصد کل هیدروکربن­های نفتی و مدت زمان نفوذ قطرات آب اندازه­گیری شد و در نهایت، کلاس آبگذری خاک تعیین گردید. همچنین، نمودار کروماتوگرافی تغییرات هیدروکربن­های نفتی توسط دستگاه GC ترسیم شد. بر اساس نمودار کروماتوگرافی، حدودا 50 درصد نرمال آلکان­ها را کربن C13-C20 تشکیل می­دهد. نتایج نشان می­دهد که افزودن زغال­زیستی باگاس نیشکر و زئوپلانت به خاک، منجر به کاهش جرم ویژه ظاهری، افزایش تخلخل کل، افزایش نفوذپذیری و افزایش نگهداشت رطوبت توسط خاک می­گردد. با افزایش سطح افزایشی تیمارها به خاک، میزان اثربخشی آنها نیز بیشتر شده است و در مجموع تیمار 6 درصد زغال­زیستی در سطح رطوبتی 25 درصد FC، از بیشترین اثربخشی برخوردار بود. کمترین جرم ویژه ظاهری و بیشترین تخلخل حاصله، مربوط به سطح 6 درصد زغال زیستی و در سطح 25 درصد FC می­باشد. همچنین، سطح 6 درصد زئوپلانت، مقدار PWP را از 8 درصد نمونه شاهد به حدود 16 درصد افزایش داده است. بدین ترتیب، استفاده از این تیمارها که در راستای اهداف مدیریت پایدار می­باشد، نقش بسزایی را در بهبود ویژگی­های فیزیکی خاک ایفاء می­نماید.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Biochar and Zeoplant on Physical Properties of Soils Contaminated with Total Petroleum Hydrocarbons (TPHs)

نویسنده [English]

  • Nilufar Mohammadi 1
1 Soil sience Dep. Faculty of Agricultue, Shahid Chamran Universityof Ahvaz, Iran
2
چکیده [English]

Extraction and exploitation of total petroleum hydrocarbons (TPHs) led to the contamination of soil and environment. Therefore, remediation of TPHs contaminated soils is necessary. The effects of biochar produced from bagasse and zeoplant as organic amendments on some physical properties of contaminated soils with TPHs were evaluated in Ahvaz, Khuzestan Province. Systematic soil sampling was performed based on the block with completely randomize design with three replications. The soil samples were transferred to the pots (7 kg) and treatments added to the soils in the 2, 4 and 6 % levels. Afterwards, the soil moisture was adjusted on 25 and 50% of field capacity (FC). All treatments were incubated for 100 days. After incubation, bulk density, porosity, FC, PWP, TPHs, water drop penetration time and the soil penetration class were measured. Meanwhile, the variation of hydrocarbons was analyzed using Gas Chromatography (GC). Based on the GC graph, approximately 50% of normal alkanes are C13-C20. Results showed that the application of biochar and zeoplant to the soil caused to decrease of bulk density and increase the total porosity, the permeability of soil, and water retention. Moreover, the efficiency of treatments was increased by increasing of treatment application. The highest efficiency was found with 6% of biochar with 25% of moisture content, also the 6% of zeoplant enhanced the PWP from 8% in the blank to­16%. So, the application of organic treatments improved soil properties; therefore, and have an important role on sustainable management.

کلیدواژه‌ها [English]

  • Gas chromatography (GC)
  • Permeability class
  • Soil porosity
  • Sustainable management
  • Water drop penetration (WDP)
Abel S., Peters A., Trinks S., Schonsky H.F., Acklam M., and Wessolek G. 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202-203:183-191.
Abosde E.E. 2013. Effect of crude oil pollution on some soil physical properties. Journal of Agriculture and veterinary science, 6:14-17.
Adams R.H., Osorio F.G., and Cruz J. Z. 2008. Water repellency in oil contaminated sandy and clayey soils. International Journal of Environmental Science and Technology, 5: 445-454.
Azimzadeh Y., Najafi N., Abdolmaleki E., Amirloo B. 2020. Changes in some chemical properties of various organic materials after converting into biochar and hydrochar. Applied Soil Research,7(4):1-17. (In Persian)
Badia D., Aguire J.A., Marti C., and Marqurz M.A. 2013. Sieving effect on the intensity and persistence of water repellency at different soil depth and soil types from NES pein. CATENA, 108:44-49.
Besalatpour A., Haj Abbasi M., Dorostkar V., Torabi Gh. 2011. Amendment of pollutant soil with TPH using integrated geo and plant remediation. Water and Soil Journal, 53, 129-142.
Burrel L.D., Zehether F., Rampazzo N., Wimmer B., Soja G. 2016. Long-term effects of biochar on soil physical properties. Geoderma, 282:96-102.
Dekker L.W. and Ritsema C.J. 1996a. Uneven moisture patterns in water repellent soils. Geoderma, 70: 87-99.
Delapa P., Doerr L., Lichner M. Sir and Tesar M. 2004. Effect of kaolinite and Ca-montmorillonite on the alleviation of soil water repellency. Plant. Soil Environ, 50:358-363.
Doerr S.H., Shakesby R.A., and Walsh R.P.D. 2000. Soil water repellency: its causes characteristics and hydrogeomorphological sighficance. Earth Sci, 51:33-65.
Eibisch N., Durner W., Bechtold M., Fu B, R., Mikutta R., Woche S.K., and Mandhelfrich M. 2015. Does water repellency of pyrochars counter their positive effects on soil hydraulic properties? Geoderma, 245:31-39.
Farzadian M. and Mosaddeghi M.R. 2014. Evaluation of soil and water pollution with oil on stability and soil permeability and pollutant management in Isfahan. Soil management journal, 3:1 43-51.
Franco C.M.M., Clarke P.J., Tate M.E., and Oades J.M. 2000. Hydrophobic properties and chemical characteristation of natural water repellent materials in Australian sands. Journal of hydrology, 231:47-58.
Gee G.W. and Bauder J.W. 1986. Particle size analysis. P.383-411, In: Klute, A. (Ed), Methods of Soil Analysis, Part 1, Physical and Mineralogical Method, American Society of Agronomy, pp. 383-411.
Gholami M. 2010. Superabsorbent a way to extentd green zreas and coolation of water declining. Rahshar Company. No. 110.
Głąb T., Palmowska J., and Zaleski T. 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Goderma, 281: 11-20.
Hallet P.D., White N., and Krits .2006. Impact of basidiomycete fungi on the wettability of soil contaminated with a hydrophobic polycylic aromatic hydrocarbon. Biologia, 61:334-338.
Hardie M., Clothier B., Bound S., Oliver G., and Close D. 2014. Does biochar influence soil physical properties and soil water availability? Plant and Soil, 376: 347–361.
Harper R. J. and Gilkes R.J. 1994. Soil attributes related to water repellency and the utility of soil survey for predicting its occurrence. Aust. J. Soil Res, 32: 1109-1124.
Herath H., Camps-Arbestain M., Hedly M. 2013. Effect of biochar on soil physical properties in two contrasting soils: An Alfisols and an andisols. Geoderma, 2016:188-197.
Herbert L., Hosek I., and Kripalani R. 2012. The characterization and comparison of biochar produced from a decentralize reactor using forced air and natural draft pyrolysis. California polytechnic State University, San Luis Obispo materials Engineering Department. 24-26.
Hubbert K.R., Busse M., Overby S., Shestak C., and Gerrard R. 2013. Pile burning effects on soil water repellency, infiltration, and downslope water chemistry in the Lake Tahoe basin, USA. Fire Ecology, 11:100-118.
Khamehchiyan M., Charkhabi A. H., and Tajik M. 2007. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils Method. Engineering Geology, 89: 220–229.
Khanmohamadi Z., Afuni M., and Mosadeghi M.R. 2014. Effect of Pyrolysis Temperature on Chemical Properties of Sugarcane Bagasse and Pistachio residues Biochar. Applied Soil Research, 3(1): 1-13. (In Persian)
Klute A.(ed). 1986. Methods of soil analysis. Part2. Microbiological and biochemical properties / editorial committee, R.W. Wearver, chair … (et al), p.cm- (Soil Science Society of America Book series; No.5).
Laired D.A., Brown R.C., Amonette J.E., and Lehmann J. 2008. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels bio products and biorefining-biofpr, 3:547-562.
Lohrasbi H., Khademalrasoul A., Farrokhian Firuzi A. 2019. Effects of biochar and zeoplant on physical and mechanical properties of erodible soils (case study: Bostan). Journal of Water and Soil, 33(5), p. 723-737. (In Persian)
Minai-Tehrani D., Herfatmanesh A., Azari-dehkordi F., and Minoi S. 2006. Effect of salinity on biodergradation of aliphatic fraction of crude oil in soil. Pak. J. Biol. Sci, 9:1531-1535.
Mukherjee A., Hamdan R., Cooper W.T., and Zimmermn A.R.A. 2013. Chemical comparison of freshly-produced and field-aged biochars and biochar-amendend soils. Chemosphere, 6:731-76.
Novak J.M., Busscher W.J., Wats D.W., Lair D.A., Ahmednam A., and Niandou M.A.S. 2010. Short-term CO2 mineralization after addition of biochar and switcgrass to a typic kandiudult. Geoderma, 1543-4:281-288.
Picolo A. and Bagwa S.C.M. 1999. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Sci. Soc. Am. J, 68:1801-1810.
Rajkovich R.A., Kioenders R., Hanley K., Hyland C., Zimmerman A.R., and Lehmann J. 2011. Corn growth and nitrogen nutrition after additions. Biology and fertility of soils, 483:271-284.
Roy J.L. and McGill, W.B. 1997. Characterization of disaggregated nonwettable surface soils found a told crude oil spill sites. Can. J. Soil Sci., 331-344.
Sousaraee N., Baranimotlagh M., Khormali F., Dordipour E. 2019. The Effect of Biochars Prepared from Agricultural Residues at Different Temperatures on Some Chemical Properties of a Calcareous Soil and Na and K Concentration of Corn (Zea mays L.). Applied Soil Research, 7(3): 164-179.
Takavira A., Gwenzi W., and Nyamugfata P. 2014. Does hydrocarbon contamination induse water repellency and changes in hydraulic properties in inherently wettable tropical sandy soils? Geoderma, 235:279-289.
Tommeorg P., Simojoki A., Makela P., Stoddard F.L., Alakukku L., and Helenius J. 2014. Short-term effects of biochar on soil properties and wheat yield formation with meat bone meal and inorganic fertilizer on boreal loamy sand. Agriculture Ecosystem Environmental, 191:108-116.
Ulytte J., Sakrabani R., Kibblewhite M., and Hann M. 2014. Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. European Journal of Soil Science, 65 (1): 2014.
Walkley A., and Black, I.A. 1934. An Examination of the degtjareff method for determining soil organic matter, and a poroposed modification of the chromic acid titration method. Soil Science, 34:29-38.