بررسی اثر بهینه‌سازی پارامترهای هیدرولیکی خاک با روش‌های حل معکوس و پارامتریک در افزایش دقت شبیه‌سازی حرکت آب در خاک با مدل HYDRUS

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای فیزیک و حفاظت خاک، دانشگاه شهید باهنر کرمان.

2 شهید باهنر کرمان

3 گروه مهندسی آب دانشگاه بیرجند

4 دانشیار گروه علوم خاک، دانشگاه بیرجند.

چکیده

ایران در کمربند خشک و نیمه‌خشک زمین قرار گرفته است و از سوی دیگر به دلیل خشکسالی، تغییر اقلیم و سوء‌مدیریت با کاهش منابع آب شیرین مواجه می‌باشد. بنابراین لزوم افزایش بهره­وری در مصرف آب امری کاملاً بدیهی و ضروری است. از روش‌های مدیریتی در راستای افزایش بهره‌وری از منابع آب می‌توان به روش‌های نوین آبیاری اشاره نمود. مدیریت و کاربرد این روش‌های نوین آبیاری نیز مستلزم مطالعه روند تغییرات رطوبت خاک و میزان قابل دسترسی آن برای گیاه می‌باشد. در این مطالعه با هدف ارزیابی عملکرد مدل هیدرولوژیکی HYDRUS-1D در روش آبیاری سنترپیوت در مزرعه یونجه چهار ساله، به ارزیابی برآورد پارامترهای هیدرولیکی خاک با استفاده از روش حل معکوس نسبت به روش توابع پارامتریک در دو عمق متفاوت پرداخته شد. از این‌رو، در این تحقیق برای تعیین مقدار هر یک از پارامترهای هیدرولیکی خاک، از الگوریتم بهینه‌ساز مجموعه ذرات (PSO)  به‌عنوان روش حل معکوس و سه تابع پارامتریکی، Rosetta، قربانی و همایی و سپاس‌خواه و بندر استفاده شد. در ابتدا از بین سه تابع پارامتریک بهترین تابع انتخاب و در ادامه میزان کارایی روش حل معکوس نسبت به روش پارامتریک در فرآیند شبیه‌سازی جریان غیراشباع آب تحت مدل HYDRUS HYDRUSمورد ارزیاب\ی قرار گرفت. نتایج بیانگر توانایی و کارایی قابل قبول الگوریتم PSO در برآورد منحنی رطوبتی خاک و پارامترهای هیدرولیکی آن بوده است. هم‌چنین با ارزیابی شاخص‌های آماری، نشان داده شد که طی لینک‌نمودن مدل HYDRUS HYDRUSبا الگوریتم PSO، این مدل بهتر توانسته است روند تغییرات رطوبت خاک را برآورد نماید. بهترین عملکرد مدل در لایه سطحی با ضرایب 0.89= E، 0.94=d و 0.98=R2  حاصل شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Effect of Optimizing Soil Hydraulic Parameters with Inverse and Parametric Solution Methods in Increasing the Accuracy of Water Movement Simulation with HYDRUS

نویسندگان [English]

  • Samaneh Etminan 1
  • Majid Mahmoodabadi 2
  • Abbas Khashei siuki 3
  • Mohsen Pourreza Bilondi 4
1 Ph.D. candidate, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman.
2
3 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Birjand
4 Associate Professor, Department of Water Engineering, Faculty of Agriculture, University of Birjand.
چکیده [English]

Iran is located in arid and semi-arid belt of the earth and also because of drought, climate changes and mismanagement of water use; its freshwater resources are declining. Therefore, the need to increase water productivity is obviously rational. New methods of irrigation can be mentioned to increase the efficiency of water resources management. Management and application of these new methods of irrigation also requires studying the process of soil moisture changes and its availability to the plant. The purpose of this study was to evaluate the performance of HYDRUS-1D hydrological model at two different depths using inverse solution method in relation to pedo-transfer functions in four-year alfalfa farm which irrigated with center pivot irrigation system. Therefore in this study, the Particle Swarm Optimization (PSO) algorithm (as inverse solution method) as well as three parametric functions including Rosetta, Gorbani Dashtaki and Homaee, and Sepaskhah and Bondar were used to estimate soil hydraulic parameters in simulating soil movement and moisture distribution in HYDRUS-1D hydrological model. So, among the three parametric functions, the best function was selected and then the efficiency of the inverse solution method was compared to the parametric method in the process of simulating the unsaturated flow with the HYDRUS model. The results indicated the acceptable ability of PSO algorithm to estimate soil moisture characteristic curve and its hydraulic parameters. Also by evaluating the statistical indices, it was shown that by linking HYDRUS model with PSO algorithm, this model was efficient to estimate the trend of soil moisture changes. The best model performance was obtained in the soil upper layer with E=0.89, d=0.94 and R2=0.98.

کلیدواژه‌ها [English]

  • HYDRUS Model
  • Inverse solution
  • Soil moisture characteristic curve
Azad N., Behmanesh J., Rezaverdinejad V., Abbasi F., and Navabian M. 2018. Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agricultural Water Management, 208: 344-356.
Ataee A., Nishabori M.R., Akbari M., Zare Haghi D., and Anabi Milani A. 2018. Evaluation of HYDRUS-2D model for determination of soil moisture distribution under surface and sub-surface drip irrigation of Pistachio trees. Search Water at Agriculture, 32(4): 581-595.
Abdelaziz R., and Zambrano-Bigiarini M. 2014. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer. Journal of Contaminant Hydrology, 164: 285-298.
Brunetti G., Šimůnek J., and Piro P. 2016. A comprehensive numerical analysis of the hydraulic behavior of a permeable pavement. Journal of Hydrology, 540: 1146-1161.
Brunetti G., Porti M., and Piro P. 2018. Multi-level numerical and statistical analysis of the hygrothermal behavior of a non-vegetated green roof in a mediterranean climate. Applied Energy, 221: 204-219.
Chen M., Willgoose G.R., and Saco P.M. 2014. Spatial prediction of temporal soil moisture dynamics using HYDRUS‐1D. Hydrological Processes, 28(2): 171-185.
Coutinho de Oliveira L.F., Rezende de Souza G., Vilela Corrêa F., and Ribeiro Motae Silva J. 2020. Parameter estimation of soil hydraulic characteristics by inverse modeling of the analytical equation for unsaturated subsurface water flow. Journal of Hydroinformatic, 22 (5): 1270-1282.
Dincă N., and Dunea D. 2018. On the assessment of light use efficiency in alfalfa (medicago sativa l.) In the eco-climatic conditions of târgovişte piedmont plain. Romanian Agricultural Research, (35): 59-69.
Gribb M.M., Forkutsa I., Hansen A., Chandler D.G., and McNamara J.P. 2009. The effect of various soil hydraulic property estimates on soil moisture simulations. Vadose Zone Journal, 8(2): 321-331.
Gabiri G., Leemhuis C., Diekkrüger B., Näschen K., Steinbach S., and Thonfeld F. 2019. Modelling the impact of land use management on water resources in a tropical inland valley catchment of central Uganda, East Africa. Science of the Total Environment, 653: 1052-1066.
Gorbani Dashtaki S., and Homaee M. 2002. Parametric estimation of hydraulic functions of the unsaturated part of the soil using transfer functions. Journal of Agricultural Engineering Research, 3(12): 1-16.
Jalali V.R., Homaee M., and Mirnia K. 2008. Modeling Canola Response to Salinity on Vegetative Growth Stages.
Jalali V.R., and Homaee M. 2010. Modeling the effect of salinity application time of root zone on yield of canola (brassica napus l.).
Kelishadi H., Mosaddeghi M.R., Hajabbasi M.A., and Ayoubi S. 2013. Evaluation and developing pedotransfer functions to predict soil saturated hydraulic conductivity at landscape scale in center Zagros. Applied Soil Research, 1(2): 16-33. (In Persian)
Kennedy J., and Eberhart R. 1995. November. Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks, 4: 1942-1948.
Lamia G., Brahim A., Jérome J., and Rachida B. 2020. Estimation of the soil hydraulic properties from field data by solving an inverse problem. Scientific Reports, 10(1): 28-40.
Li Y. B., Liu Y., Nie W. B., and Ma X. Y. 2018. Inverse modeling of soil hydraulic parameters based on a hybrid of vector-evaluated genetic algorithm and particle swarm optimization. Water, 10(1): 84.
Li C., Zhang C., Luo, G., Chen X., Maisupova B., Madaminov A. A., and Djenbaev B.M. 2015. Carbon stock and its responses to climate change in Central Asia. Global Change Biology, 21(5): 1951-1967.
Liu K., Huang G., Jiang Z., Xu X., Xiong Y., Huang Q., and Šimůnek J. 2020. A Gaussian Process-based Iterative Ensemble Kalman Filter for parameter estimation of unsaturated flow. Journal of Hydrology, 125210.
Liu Z. 2010. Bimodality in a monostable climate–ecosystem: the role of climate variability and soil moisture memory. Journal of Climate, 23(6): 1447-1455.
Mahbod M., and Zand-Parsa S. 2010. Prediction of soil hydraulic parameters by inverse method using genetic algorithm optimization under field conditions. Archives of Agronomy and Soil Science, 56(1): 13-28.
Mashayekhi P., Gorbani Dashtaki S., Mosaddeghi M.R., Shirani H., Panahi M., and Nouri M. R. 2016. Inverse estimation of the soil water retention curve parameters using double-ring infiltration data. Applied Soil Research, 4(2): 26-37. (In Persian)
Moradkhani H., Hsu K.L., Gupta H., and Sorooshian S. 2005. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter. Water Resources Research, 41(5).
Mousavi Dehmurdi A., Gorbani Dashtaki S., and Mashayekhi P. 2018. Performance of selected information models based on obtained data from double-ring and Hydrus-1D software. Applied Soil Research, 7(2): 182-195. (In Persian)
Neitsch S.L., Arnold J.G., Kiniry J.R., and Williams J.R. 2005. Soil and water assessment tool (SWAT), theoretical documentation. Blackland Research Center, Grassland. Soil and Water Research Laboratory, Agricultural Research Service, Temple, TX.
Nishat S., Guo Y., and Baetz B.W. 2007. Development of a simplified continuous simulation model for investigating long-term soil moisture fluctuations. Agricultural Water Management, 92(1-2): 53-63.
Qu W., Bogena H.R., Huisman J.A., Martinez G., Pachepsky Y.A., and Vereecken H. 2014. Effects of soil hydraulic properties on the spatial variability of soil water content: Evidence from sensor network data and inverse modeling. Vadose Zone Journal, 13(12).
Rawls W.J., Brakensiek D.L., and Saxtonn K.E. 1982. Estimation of soil water properties. Transactions of the ASAE, 25(5): 1316-1320.
Russo D., Bresler E., Shani U., and Parker J. C. 1991. Analyses of infiltration events in relation to determining soil hydraulic properties by inverse problem methodology. Water Resources Research, 27(6): 1361-1373.
Saadat S., and Homaee M. 2015. Modeling sorghum response to irrigation water salinity at early growth stage. Agricultural Water Management, 152: 119-124.
Saleh I., Kavian A., Jafarian Z., and Ahmadi R. 2016. Estimation of final soil rate using fuzzy clustering algorithm, nero fuzzy (ANFIS) and fuzzy inference system (FIS) (a case study: Behshahr plain, Galougah, Mazandaran, Iran). Applied Soil Research, 4(2): 47-59. (In Persian)
Sepaskhah A.R., and Bondar H. 2002. Estimating van genuchten soil water retention curve from some soil physical properties. Iran Agricultural Research, 21: 105-118. (In Persian)
Šimůnek J., and Van Genuchten M. T. 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resources Research, 32(9): 2683-2696.
Šimůnek J., Wendroth O., and Van Genuchten M.T. 1999. Soil hydraulic properties from laboratory evaporation experiments by parameter estimation. In Proc. Int. Workshop, Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media, 713-724.
Šimůnek J., Van Genuchten M.T., and Sejna M. 2006. The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical manual, 1.
Šimůnek J., and Van Genuchten M.T. 2008. Modeling nonequilibrium flow and transport processes using HYDRUS. Vadose Zone Journal, 7(2): 782-797.
Šimůnek J., Šejna M., Saito H., Sakai M., and Van Genuchten M.T. 2013. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; Version 4.17; Department of Environmental Sciences University of California Riverside: Riverside, CA, USA.
Šimůnek J., Van Genuchten M.T., and Šejna M. 2016. Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7): vzj2016-04.
Sprenger M., Volkmann T.H., Blume T., and Weiler M. 2015. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrology and Earth System Sciences, 19(6): 2617-2635.
Van Dam J.C., Huygen J., Wesseling J.G., Feddes R.A., Kabat P., Van Walsum P.E.V., . and Van Diepen C.A. 1997. Theory of SWAP version 2.0; Simulation of water flow, solute transport and plant growth in the soil-water-atmosphere-plant environment (No. 71). DLO Winand Staring Centre.
Van Dam J.C., Stricker J.N.M., and Droogers P. 1994. Inverse method to determine soil hydraulic functions from multistep outflow experiments. Soil Science Society of America Journal, 58(3): 647-652.
Ventrella D., Castellini M., Di Prima S., Garofalo P., and Lassabatère L. 2019. Assessment of the physically-based Hydrus-1D model for simulating the water fluxes of a Mediterranean cropping system. Water, 11(8): 1657.
Vereecken H., Weynants M., Javaux M., Pachepsky Y., Schaap M.G., and Genuchten M.T. 2010. Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: A review. Vadose Zone Journal, 9(4): 795-820.
Vereecken H., Huisman J.A., Pachepsky Y., Montzka C., Van Der Kruk J., Bogena, H., . and Vanderborght J. 2014. On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516: 76-96.
Vogeler I., Carrick S., Cichota R., and Lilburne L. 2019. Estimation of soil subsurface hydraulic conductivity based on inverse modelling and soil morphology. Journal of Hydrology, 574: 373-382.
Vrugt J.A., Stauffer P.H., Wöhling T., Robinson B.A., and Vesselinov V.V. 2008. Inverse modeling of subsurface flow and transport properties: A review with new developments. Vadose Zone Journal, 7(2): 843-864.
Wessolek G. 1989. Einsatz von Wasserhaushalts—Und Photosynthesemodellen in der Ökosystemanalyse. Landschaftsentwicklung und Umweltforschung, Schriftenreihe des FB 14. TU Berlin, 61: 164.
Wang J., Gong S., Xu D., Juan S., and Mu J. 2013. Numerical simulations and validation of water flow and heat transport in a subsurface drip irrigation system using HYDRUS‐2D. Irrigation and Drainage, 62(1): 97-106.
Yang X., and You X. 2013. Estimating parameters of van Genuchten model for soil water retention curve by intelligent algorithms. Applied Mathematics and Information Sciences, 7(5): 1977.
Yang Q., Zuo H., and Li W. 2016. Land Surface Model and Particle Swarm Optimization Algorithm Based on the Model-Optimization Method for Improving Soil Moisture Simulation in a Semi-Arid Region. PloS One, 11(3) .
Zhang X., Srinivasan R., Zhao K., and Liew M.V. 2009. Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Processes: An International Journal, 23(3): 430-441.