ارزیابی توان تولید سیدروفور توسط سیانوباکترهای جداسازی شده از اراضی شالیزاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی گروه علوم و مهندسی خاک- دانشکده کشاورزی- دانشگاه شهرکرد

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، ایران.

چکیده

سیدروفورها ترکیبات آلی با جرم مولکولی کم بوده که در شرایط کمبود آهن برای کمپلکس کردن آهن (III) به منظور تنظیم فعالیت­های مبتنی بر آهن بیان می­شوند. سیانوباکترها که ریزموجودات گرم منفی فتواتوتروف پروکاریوتی هستند، نوع هیدروکسامات سیدروفور در آنها غالب است. این بررسی با هدف قابلیت تولید سیدروفور سویه­های بومی سیانوباکترهای مزارع برنج در پژوهشکده زیست­فناوری طبرستان انجام گرفت. برای این منظور 30 جدایه از سیانوباکترهای شالیزارهای استان گیلان جداسازی شدند. توان تولید سیدروفور سویه­ها با استفاده از محیط کشت جامد و مایع حاوی کرم آزرول اس (CAS) ارزیابی شدند و آزمایش گلدانی برای ارزیابی کاربرد سویه­های برتر گزینش شده سیانوباکتری بر رشد و عملکرد گیاه برنج (رقم طارم هاشمی) انجام گردید. تیمار مایه­زنی سیانوباکتر با هفت سویه برتر گزینش شده و تیمار شاهد بدون مایه­زنی با سه تکرار در قالب طرح پایه بلوک کامل تصادفی در گلخانه انجام شد. نتایج حاصل از این پژوهش نشان داد که بیش‌ترین میزان نسبت هاله به کلونی در روش CAS- آگار جدایه­های Chroococcus sp. GGuCy-34 و Anabaena sp. GGuCy-49 به ترتیب 19/4 و 08/4 و در روش اسپکتروفتومتری سویه­های Anabaena sp. GGuCy-21 و Nostoc sp. GGuCy-47 به ترتیب 69/6 و 75/5 میکرومول بر لیتر در روز بود. در آزمایش گلدانی سویه Anabaena sp. GGuCy-42 بیش‌ترین عملکرد دانه (27/8 گرم بر گلدان)، سویه Chroococcus sp. GGuCy-34 بیش‌ترین جذب آهن (31/2 میلی­گرم در گلدان) و سویه Cylendrospermum sp. GGuCy-25 بیش‌ترین جذب نیتروژن (3/81 میلی­گرم در گلدان) و فسفر (7/11 میلی­گرم در گلدان) در برنج را نشان داد. نتایج حاصل از ارزیابی تولید سیدروفور سیانوباکترها در روش CAS- آگار با نتایج حاصل از آزمایش گلدانی مطابقت بیش‌تری داشت. افزایش جذب آهن را می­توان به علت تأثیر سیدروفور سویه­ها در فراهمی آهن برای گیاه دانست. باتوجه به اینکه سیانوباکترهای توانمند در تولید سیدروفور، می­توانند به عنوان عوامل محرک رشد گیاه هم مورد استفاده قرار گیرند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Siderophore Production Capacity by Isolated Cyanobacteria from Paddy Fields

نویسندگان [English]

  • saheb soodaee mashaee 1
  • Nasser Aliasgharzad 2
1 Faculty, Shahrekord University
2 Professor, Soil Science Department, Faculty of Agriculture, Tabriz University, Iran
چکیده [English]

Siderophores are low molecular weight organic chelators which mostly expressed under iron deficiency to chelate Fe (III) metal ions in order to regulate iron based activities. Cyanobacteria, which are Gram-negative photoautotrophic prokaryotic organisms, hydroxamate type of siderophore predominates. The objective of this investigation was to determine the potentials of some indigenous cyanobacteria for siderophore production in Tabarestan Biotechnology Institute in 2014. For this purpose, 30 strains of cyanobacteria were isolated from Guilan paddy field. Potentials of these strains for siderophore production were evaluated by chrome azorel-S assay (CAS-agar) through color change. Pot experiment was performed to evaluate the application of selected top strains of cyanobacteria on growth and yield of rice plant (cv. Tarom Hashemi). Cyanobacter inoculation treatment was selected with the top seven strains and control treatment without inoculation with three replications was performed in a randomized complete block design in the greenhouse. The results of this study showed that the highest rate of siderophore production in CAS- agar Chroococcus sp. GGuCy-34 and Anabaena sp. GGuCy-49, 4.19 and 4.08 respectively and in spectrophotometer method strains of Anabaena sp. GGuCy-21 and Nostoc sp. GGuCy-47, 6.69 and 5.75 (µmol/L.day) respectively. Anabaena sp. GGuCy-42 highest grain yield (8.27 g pot-1) Chroococcus sp. GGuCy-34 showed the highest iron uptake (2.31 mg pot-1) and Cylendrospermum sp. GGuCy-25 the highest N (81.3 mg pot-1) and P (11.7 mg pot-1) uptake in pot experiment in rice plant. The results of the evaluation of siderophore production of cyanobacteria in CAS- agar with the results of the pot experiment were more consistent. Increased iron uptake can be attributed to the effect of siderophore strains on plant iron availability. Due to the fact that cyanobacteria capable of producing siderophore can also be used as stimulants of plant growth.

کلیدواژه‌ها [English]

  • Chrome azurol S
  • Cyanobacteria
  • Spectrophotometer method
  • Siderophore-iron chelate
  • Rice
Aliasgharzad N., Shirmohamadi E., and Oustan S. 2009. Siderophore production by mycorrhizal sorghum roots under micronutrient deficient condition. Soil and Environment, 28(2): 119-123.
Bahmanyar M.A., and Soodaee Mashaee S. 2012. Influences of nitrogen and potassium top dressing on yield and yield components as well as their accumulation in rice (Oryza sativa). African Journal of Biotechnology, 9(18): 2648-2653.
Bashir K., Ishimaru Y., and Nishizawa N.K. 2010. Iron uptake and loading into rice grains. Rice, 3: 122-130.
Begum Z.N.H., Mandal R., and Islam S. 2011. Effect of cyanobacterial biofertilizer on the growth and yield components of two HYV of rice. Journal of Algal Biomass Utilization, 2(1): 1-9.
Challis G.L. 2005. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chembiochem, 6: 601-611.
Crowley D.E., Wang Y.C., Reid C.P.P., and Szaniszlo P.J. 1991. Mechanism of iron acquisition from siderophores by microorganisms and plants. Plant and Soil, 130: 179-198.
Davatgar N., and Esfehani M. 2013. Develop standards for determining potential and assessing damage by managerial and natural factors at different stages of rice plant growth. Final report of the study project, Rice Research Institute of Iran. Agricultural Research- Education and Extension Organization, 198p. (In Persian)
Delaporte-Quintana1 P., Lovaisa N.C., Rapisarda V.A., and Pedraza R.O. 2020. The plant growth promoting bacteria Gluconacetobacter diazotrophicus and Azospirillum brasilense contribute to the iron nutrition of strawberry plants through siderophores production. Plant Growth Regulation, 91(2): 185-199.
Desikhachary T.V. 1959. Cyanophyta. Indian Council of Agricultural Research Publishers. 565p.
Dhar D.W., Prasanna R., and Singh B.V. 2007. Comparative Performance of Three Carrier Based Blue Green Algal Biofertilizers for Sustainable Rice Cultivation. Journal of Sustainable Agriculture, 30(2): 41-52.
Du L., and Shen B. 2001. Biosynthesis of hybrid peptide-polyketide natural products. Current Opinion in Drug Discovery and Development, 4: 215-228.
Emami A. 1996. Plant analysis methods. Iranian Plant and Water Research Institute. No. 928. (In Persian)
Esfehani M., Sadrzade S.M., Kavoosi M., and Dabagh-Mohammad-Nasab A. 2005. Study the effect of different levels of nitrogen and potassium fertilizers on growth, grain yield, yield components of rice (Oryza sativa) cv. Khazar. Iranian Agronomy Journal, 7(3): 226-241. (In Persian)
Fairhurst T.H., and Dobermann A. 2002. In Better Crops International. Vol. 16.
FAOSTAT. 2017. Statistical Database of the Food and Agricultural Organization of the United Nations. http://www.fao.org/faostat/en/#data (2017).
Fresenborg L.S., Graf J., Schatzle H., and Schleiff E. 2020. Iron homeostasis of cyanobacteria: advancements in siderophores and metal transporters. Advances in Cyanobacterial Biology, Academic Press, pp. 85-117.
Hense I., and Beckmann A. 2006. Towards a model of cyanobacteria life cycle-effects of growing and resting stages on bloom formation of N2-fixing species. Ecological Modeling, 195: 205-218.
Ito Y., and Butler A. 2006. Structure of synechobactins, new siderophores of the marine cyanobacterium Synechococcus sp. PCC 7002. Limnology and Oceanography, 50(6): 1918-1923.
Jha M.N., and Prasad A.N. 2006. Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life. World Journal of Microbiology & Biotechnology, 22: 73-79.
Johansson C., and Bergman B. 1994. Reconstitution of the symbiosis of Gunnera manicata Linden: cyanobacterial specificity. New Phytology, 126: 643-652.
John D.M., Whitton B.A., and Brook A.J. 2003. The freshwater algal flora of the British Isles, an identification guide to freshwater and terrestrial algae. Cambridge University Press. p. 251.
Kaushik B.D. 1987. Laboratory Methods for Blue-green Algae. Associated Publishing Company. p.171.
Kranzler C., Lis H., Shaked Y., and Keren N. 2011. The role of reduction in iron uptake processes in a unicellular, planktonic cyanobacterium. Environmental Microbiology, 13: 2990-2999.
Lis H., Kranzler C., Keren N., and Shaked Y. 2015. A Comparative Study of Iron Uptake Rates and Mechanisms amongst Marine and Fresh Water Cyanobacteria: Prevalence of Reductive Iron Uptake. Life, 5: 841-860.
Lis H., Shaked Y., Kranzler C., Keren N., and Morel F.M.M. 2014. Iron bioavailability to phytoplankton: An empirical approach. ISME Journal, 9(4): 1003-13.
Mydy L. Bailey D.C. Patel K.D. Rice M.R., and Gulick A.M. 2020. The Siderophore Synthetase IucA of the Aerobactin Biosynthetic Pathway Uses an Ordered Mechanism. Biochemistry, Just Accepted Manuscript. DOI: 10.1021/acs.biochem.0c00250.
Neilands J.B. 1981. Microbial iron compounds. Annual Review of Biochemistry, 50:715-731.
Payne S.M. 1994. Detection, isolation, and characterization of siderophores. Methods in Enzymology, 235: 329-344.
Rastogi R.P., and Sinha R.P. 2009. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnology Advances, 27: 521-539.
Rezanka T., Palyzová A., and Sigler K. 2018. Isolation and identification of siderophores produced by cyanobacteria. Folia Microbiologica, 63(5): 569-579.
Sahu D., Priyadarshani I., and Rath B. 2012. Cyanobacteria- as potential biofertilizers. CIBTech Journal of Microbiology, 1(2-3): 20-26.
Schwyn B., and Neilands J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160: 47-56.
Sharifi R., Ahmadzade M., Sharifi Tehrani E., and Falahzade V. 2008. Role of competition for iron uptake by fluorescent Pseudomonas in controlling Rhizoctonia solani (Kühn), the cause of bean seedling death. Journal of Plant Protection (Agricultural Science and Technology), 22(2): 183-195.
Sharkawi H.E., Yamamoto S., and Honna T. 2006. Rice yield and nutrient uptake as affected by cyanobacteria and soil amendments- a pot experiment. Journal of Plant Nutrients and Soil Science, 169: 809-815.
Shen B. 2003. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Current Opinion in Chemical Biology, 7: 285-295.
Singh A., Kaushik M.S., Srivastava M., Tiwari D.N., and Mishra A.K. 2016. Siderophore mediated attenuation of cadmium toxicity by paddy field cyanobacterium Anabaena oryzae. Algal Research, 16: 63-68.
Soodaee Mashee S. Nematzadeh G.A. Aliasgharzad N., and Soltani N. 2016. Physiological study of soil-born cyanobacteria of rice fields in Guilan and application of efficient strains in improving growth and yield of rice. Water and Soil Science, 26 (2):247-258. (In Persian)
Stanier R.Y., Kunisawa R., Mandal M., and Cohen-Bazire G. 1971. Purification and properties of unicellular blue green algae (Order: Chroococcales). Bacteriological Review, 35: 171-305.
Tahmasbi F. Lakzian A. Khavazi K., and Pakdin Parizi A. 2014. Isolation, identification and evaluation of sidrophore production in Pseudomonas bacteria and its effect on hydroponically grown corn. Journal of Cellular and Molecular Research, 27 (1):74-87. (In Persian)
Trick C.G., and Kerry A. 1992. Isolation and purification of siderophores produced by cyanobacteria, Synechococcus sp. PCC 7942 and Anabaena variabilis ATCC 29413. Current Microbiology, 24:241-245.
Ueno D., Matsumoto K., Enami T., Nishiyama N., Kato S.I., and Iwasaki K. 2019. Efficacy of an artificial microbial siderophore-Fe(III) with high redox potential on correcting Fe chlorosis in rice. Soil Science and Plant Nutrition, 65(5): 471-478 .
Wei T., Liu X., Dong M.F., Lv X., Hua L., Jia H.L., Ren X.H., Yu S.H., Guo J.K., and Li Y.T. 2021. Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L.). Journal of Environmental Management, 278: 111533.
Wilhelm S.W., and Trick C.G. 1994. Iron-limited growth of cyanobacteria; multiple siderophore production is a common response. Limnology and Oceanography, 39: 1979-1984.