سینتیک واجذب مس در یک خاک لوم شنی آلوده شده به مس با کاربرد بیوچار اصلاح شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده کشاورزی، دانشگاه شهید باهنر کرمان ، بخش علوم و مهندسی خاک، کرمان، ایران.

2 استاد گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه شهید باهنر کرمان

چکیده

آلودگی و انباشتگی فلزات سنگین در خاک یکی از مهمترین چالش­های زیست محیطی می­باشد که زندگی گیاهان، حیوانات و انسان­ها را تهدید می­نماید. یکی از روش­های مؤثر در جهت کاهش اثرات زیان­آور فلزات سنگین در خاک­های آلوده افزودن بیوچار به عنوان یک ماده اصلاح­کننده به خاک می­باشد. در این پژوهش کارایی بیوچار پوست نرم بادام و پوست برنج (دمای گرماکافت 500 درجه سانتی­گراد) همچنین بیوچار اصلاح شده آن­ها با NaOH و HNO3 جهت به حداقل رساندن آلودگی خاک­ به مس مورد بررسی قرار گرفت. آزمایش به صورت فاکتوریل در قالب طرح کاملاً تصادفی با سه تکرار اجرا شد. به همین منظور دو تیمار بیوچار پوست نرم بادام و پوست برنج (اصلاح نشده و اصلاح شده با NaOH و HNO3) در سطوح شاهد (بدون بیوچار) و چهار درصد وزنی استفاده گردید. به خاک هر گلدان مس در سه سطح (صفر، 50 و 200 میلی­گرم بر کیلوگرم) از منبع نمک سولفات مس (CuSO4.5H2O) اضافه شد. در این راستا مدل­های سینتیک واجذب مس مورد ارزیابی قرار داده شدند. در دوره­های زمانی مختلف از 30 دقیقه تا 48 ساعت به وسیله EDTA عصاره­گیری انجام شد و غلظت مس موجود در نمونه­ها تعیین گردید. نتایج نشان داد کاربرد بیوچارهای اصلاح شده در تمام زمان­ها باعث کاهش معنی­دار واجذب مس نسبت به تیمار شاهد گردید. بین بیوچار پوست نرم بادام و پوست برنج و همچنین ترکیبات اصلاح­کننده بیوچارها اختلاف معنی­داری از نظر آماری در سطح 5 درصد وجود داشت. بیوچار پوست برنج اصلاح شده نسبت به بیوچار پوست نرم بادام اصلاح شده موثرتر می­باشد. بیوچار پوست برنج اصلاح شده با NaOH در مقایسه با بیوچار پوست نرم بادام اصلاح شده در غلظت 50 و 200 میلی­گرم بر کیلوگرم در زمان 480 دقیقه، به ترتیب به مقدار 21 و 37 درصد کاهش نشان داد. معادله تابع توانی به دلیل ضریب تبیین بالا و خطای استاندارد پایین به عنوان بهترین معادله سینتیک واجذب مس معرفی شد.

کلیدواژه‌ها


عنوان مقاله [English]

Kinetics of Cu Desorption in a Cu -Contaminated Sandy Loam Soil Using Modified Biochar

نویسندگان [English]

  • zahra dianat maharluei 1
  • majed fekri 2
1 Agriculture Faculty, Shahid Bahonar University of Kerman, Department of Soil Science, Kerman, Iran.
2 Professor, Department of Soil Science, Faculty of Agriculture, Shahid Bahonar University of Kerman
چکیده [English]

Pollution and accumulation of heavy metals in the soil are the most important environmental challenges that threaten the lives of plants, animals and humans. One of the effective methods to reduce the harmful effects of heavy metals in contaminated soils is the application of biochar as a soil amendment. In this study, the efficiency of almond soft husk and rice husk biochars (temperature of 500 °C) as well as their modified biochars with NaOH and HNO3 were investigated to reduce soil contamination by copper. The experiment was performed in a factorial experiment in a completely randomized design with three replications. For this purpose, two biochar treatments of almond soft husk and rice husk (unmodified and modified with NaOH and HNO3) were used in two levels (without biochar as a control and 4% by weight). Copper was added in the soil of each pots in three levels (0, 50 and 200 mg kg-1) from the copper sulfate salt source (CuSO4.5H2O). In this regard, different kinetics desorption models of copper were evaluated. Copper concentrations in different time periods (from 30 minutes to 48 hours) were determined using EDTA method in the samples. The results showed that the application of modified biochars at different times caused a significant reduction in copper desorption compared to the control treatment. There was a statistically significant difference between almond soft husk and rice husk and also between different Modified biochar at 5% level. Modified rice husk is more effective than almond soft husk. Sodium hydroxide-modified rice husk biochar reduced copper by 21% and 37%, respectively, compared to almond soft husk modified biochar at 50 and 200 mg kg-1 in 480 minutes, respectively. The power function was introduced as the best Copper desorption kinetics equations due to its high values coefficient of determination (R2) and low values standard error of estimation (SE).

کلیدواژه‌ها [English]

  • Rice husk
  • Nitric acid
  • Sodium hydroxide
  • Almond soft husk
  • Power function equation
Aharoni C., Levinson S., Ravina I., and Sparks DL. 1991. Kinetics of soil chemical reactions: Relationships between empirical equations and diffusion models. Soil Science Society of America Journal, 55: 1307-1312.
Basta A.H., Fierro V., El-Saied H., and Celzard A. 2009. 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Bioresource Technology, 100: 3941-3947.
Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54: 464-465.
Bremner J.M. 1996. Nitrogen Total in: D.L. Sparks et al., (Eds) Methods of Soil Analysis. Part 3, 3rd ed., American. Society. Agronomy, Madison. WI, pp. 1085 – 1122.
Buragohain M., Bhuyan B., and Sarma H.P. 2010. Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environmental Monitoring and Assessment, 170: 345-51.
Cheng W., Tsuruta H., Chenb G., and Yagi K. 2004. N2O and NO production in various Chinese agricultural soils by nitrification. Soil Biology and Biochemistry, 36: 953-963.
Chien SH., and Clyton WR. 1980. Application of elovich equation to the kinetics of phosphate release and sorption in soils. Soil Science Society America Journal, 44: 265-286.
Chia C.H., Downie A., and Munroe P. 2015. Characteristics of Biochar: Physical and Structural Properties. In: Biochar for Environmental Management: Science.Technology and Implementation, 89 p.
Ding Z., Hu X., Wan Y., Wang S., and Gao B. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry, 33: 239–245.
Dang Y.P., Dalal R.C., Edwards D.G., and Tiller K.G. 1994. Kinetics of zinc desorption from vertisols. Soil Science Society of America Journal, 58: 1392-1399.
Fan Y., Wang B., Yuan S., Wua X., Chen J., and Wang L. 2010. Adsorptive removal of chloramphenicol from wastewater by NaOH modified bamboo charcoal. Bioresource Technology, 101: 7661-7664.
Feng Z., and Zhu L. 2018. Sorption of phenanthrene to biochar modified by base. Frontiers of Environmental Science & Engineering, 12: 1-12.
Gaskin J., Steiner C., Harris K., Das K., and Bibens B. 2008. Effect of low temperature pyrolysis conditions on biochar for agriculture use. Transaction of the Asabe, 51: 2061-2069.
Gee G.W., and Bauder J.W. 1986. Particle-Size Analysis. In A. Klute (Ed.) Method of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI, pp. 383-411.
Gilmour JT.1984. The effect of soil properties on nitrification and nitrification inhibition. Soil Science Society America Journal, 48: 1262-1266.
Gomez-Eyles J.L., Sizmur T., Collins C.D., and Hodson M.E. 2011. Effects of biochar and the earthworm eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environmental Pollution, 159: 616-622.
Grejtovsky A., Grejtovsky A., Markusova K., Eliasova A., and Safarik, P.J. 2006. The response of chamomile (Matricaria chamomilla L.) plants to soil zinc supply. Plant, Soil and Environment, 52: 1-7.
Hall G., Woodborne S., and Scholes M. 2008. Stable carbon isotope rations from archaeological charcoal as palaeoenvironmental indicators. Chemical Geology, 247: 384-400.
Haluschak P. 2006. Laboratory methods of soil analysis. Canada -Manitoba soil survey, 3-133.
Ho YS. 2006. Review of second-order models for adsorption systems. Journal of Hazardous Materials, 136: 681-689.
Hu X., Ding Z., Zimmerman A.R., Wang S., and Gao B. 2015. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Research, 68: 206-216.
Inyang M., Gao B., Yao Y., Xue Y., Zimmerman A.R., Pullammanappallil P., and Cao X. 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110: 50–56.
Kabata-Pendias A., and Pendias H. 2000. Trace elements in soils and plants. CRC Press, Boca Raton, Florida.
Karimi A., Moezzi A.A., Chorom M., and Enayatizamir N. 2020. Influence of Sugarcane bagasse biochar on nutrition availability and biological properties of a calcareous soil. Applied Soil Research, 8(1): 1-17. (In Persian)
Karami N., Clemente R., Moreno-Jiménez E., Lepp N. W., and Beesley L. 2011. Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191: 41-48.
Khater A.H., and Zaghloul A.M. 2001. Copper and zinc desorption kinetics from soil: Effect of pH, Paper Presented at the 17th World Conference on Soil Science. In Thailand, Symposium, 47 p.
Koushafar M., Khoshgoftarmanesh A.H., Moezzi A.A., and Mobli M. 2011. Effect of dynamic unequal distribution of salts in the root environment on performance and crop per drop (CPD) of hydroponic-grown tomato. Scientia Horticulturae, 131: 1-5.
Kuo S., and Lotse E.G. 1974. Kinetics of phosphate adsorption and desorption by lake sediments. Soil Science Society of America, 38: 50- 54.
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W., and Crowley D. 2011. Biochar effects on soil biota. A review. Soil Biology and Biochemistry, 43: 1812–1836.
Li Q., Zhai J., Zhang W., Wang M., and Zhou J. 2006. Kinetic studies of adsorption of Pb (II), Cr (III) and Cu (II) from aqueous solution by sawdust and modified peanut husk. Journal of Hazardous Material, 141: 163.167.
Lindsay W.L., and Norvell W.A. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42: 421-428.
Loeppert R.H., and Suarez D.L. 1996. Carbonate and Gypsum. In: Sparks, D.L. (Eds). Methods of Soil Analysis. Part 3. 3rd Ed. Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, pp. 437- 474.
Lua A.C., Yang T. and Guo J. 2004. Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis, 72: 279-287.
Ma L., Xu R., and Jiang J. 2010. Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal Environmental Science, 22: 689- 695.
Nelson D.W., and Sommers L.E. 1996. Total carbon, organic carbon, and organic matter. 3rd Ed. In: Sparks, D. L., et al., (Ed). Methods of Soil Analysis. Part 3- Chemical Methods and Microbiological Properties. Soil Science of America and American Society of Agronomy, Madison, Wisconsin, pp. 961-1010.
Norozi M., Tabatabaii S.H., Norozi M.R., and Motaghyan H.R. 2016. Biochar short-term effects of date leaves on maintaining moisture in sandy loam soil. Journal of Water and Soil Conservation, 6: 137-150. (In Persian)
Rajapaksha A.U., Chen S.S., Tsang D.C., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N.S., and Ok Y.S. 2016. Engineered/designer biochar for contaminant removal/ immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 148: 276- 291.
Regmi P., Garcia Moscoso J.L., Kumar S., Cao X., Mao J., and Schafran G. 2012. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109: 61-69.
Reyhanitabar A., and Karimian N. 2008. Kinetics of copper desorption of selected calcareous soils from Iran. Amrican Eurasian Journal Agriculcgral Environntal Science, 4: 287-293.
Rhoades J.D., Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., Soltanpour P.N., and Sumner M.E. 1996. Salinity: Electrical Conductivity and Total Dissolved Solids. Methods of Soil Analysis. Part 3-Chemical Methods, pp. 417-435.
Sacmacı S., Kartal S., and Sacmacı M.  2012. Determination of Cr (III), Fe (III), Ni (II), Pb (II) and Zn (II) ionsby FAAS in environmental samples after separation and preconcentration by solvent extraction using a triketone reagent. Environmental Bulletin, 21: 1563-70.
Sefidgar shahkolaie S., Barani Motlagh M., Dordipour E. and Khormali F. 2020. Effects of organic and inorganic amendments on fractionation of cadmium during incubation time in a contaminated calcareous soil. Applied Soil Research, 8(3): 14-26. (In Persian)
Sharpley A.N. 1983. Effect of soil properties on the kinetics of phosphorus desorption. Soil Science Society of America, 47: 462- 467.
Shen X., Huang D., Zhu H., Wang Sh., Xu Ch., He Y., Luo Z., and Zhu Q. 2016. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil. Journal of Environmental Management, 168: 245-251.
Smith SR. 2009. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste compost compared to sewage sludge. Environment International, 35: 142-56.
Song W., and Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of analytical and Applied Pyrolysis, 94: 138-145.
Sparks DL, 1986. Soil Physical Chemistry. Kinetics of Reactions in Pure and Mixed Systems. CRC Press, Boca Raton, FL, pp. 83- 145.
Sumner M.E., Miller W.P., Sparks D.L., Page A.L., Helmke P.A., Loeppert R.H., and Johnston C.T. 1996. Cation Exchange Capacity and Exchange Coefficients. Methods of Soil Analysis. Part 3-Chemical Methods, pp. 1201-1229.
Tan Z., Wang Y., Kasiuliene A., Huang C., and Ai P. 2017. Cadmium removal potential by rice straw-derived magnetic biochar. Clean Technologies and Environmental Policy, 19: 761-774.
Thomas G.W. 1996. Soil pH and Soil Acidity. In: D.L. Sparks et al., (Eds) Methods of Soil Analysis. part 3-American Society of Agronomy., Madison. WI, pp. 475-490.
Tarley CRT, Ferreira SLC, and Arruda MAZ. 2004. Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchemical Journal, 77: 163-175.
Usman A.R.A., Ahmad M., El-Mahrouky M., Al-Omran A., Ok Y.S., Sallam A.S., El-Naggar A.H., and Al-Wabel M.I. 2016. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health, 38: 511–521.
Ullah H., Noreena Fozia S., Rehman A., Waseem A., Zubair S., Adnana M., and Ahmad I. 2017. Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arabian Journal of Chemistry, 10: 10-18.
Vithanage M., Rajapaksha A.U., Zhang M., Thiele-Bruhn S., Lee S.S., and Ok Y.S. 2015. Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research, 22: 2175–2186.
Wang H., Gao B., Wang S., Fang J., Xue Y., and Yang K. 2015. Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology, 197: 356–362.
Wang J., and Wang S. 2019. Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227: 1002-1022.
Wongrod S., Simon S., van Hullebusch E.D., Lens P.N., and Guibaud, G. 2018. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As (III and V) and Cd (II) sorption. International Biodeterioration & Biodegradation, 135: 96-102.
Zhang Q.P., Liu Q.C., Li B., Yang L., Wang C.Q., Li Y.D., and Xiao R. 2017. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere, 175: 332–340.