نوع مقاله : مقاله پژوهشی

نویسندگان

سنندج، دانشگاه کردستان، دانشکده کشاورزی، گروه علوم و مهندسی خاک

چکیده

در چند دهه اخیر، استفاده از داده­های طیفی خاک به­عنوان روشی سریع، کم­هزینه و غیرمخرب در تخمین ویژگی­های مبنایی خاک به­مقدار زیادی مورد توجه قرار گرفته است. در این پژوهش امکان استفاده از توابع انتقالی طیفی (STFs) و خاکی (PTFs) در برآورد پارامتر­های مدل­های فرکتالی و تجربی منحنی نگه­داشت آب در خاک (SWRC) بررسی شد. بدین منظور، تعداد 100 نمونه خاک سطحی جمع­آوری و منحنی­های بازتاب طیفی آن­ها با استفاده از دستگاه اسپکترورادیومتر زمینی در گستره 2500-350 نانومتر اندازه­گیری شد. برخی ویژگی­‌های فیزیکی خاک و پارامتر­های حاصل از برازش مدل­‌های فرکتالی و تجربی SWRC بر داده­‌های اندازه‌گیری شده تعیین گردید. پس از انجام پیش­پردازش­های طیفی، با استفاده از روش رگرسیونی خطی چندگانه گام­به­گام و بهره­گیری از داده­های مبنایی و طیفی خاک، روابطی ریاضی به­ترتیب تحت­عنوان توابع انتقالی خاکی (PTFs) و طیفی (STFs) پی­ریزی شد. با توجه به نتایج، تابع انتقالی پارامتریک (PTF) پی­ریزی­شده در برآورد بعد فرکتال توزیع اندازه ذرات خاک (Dpsd) از دقت بسیار بالایی برخوردار بود (R2 معادل 96/0)، حال آن­که توابع پارامتریک اشتقاق یافته در برآورد سایر پارامتر­های فرکتالی و هیدرولیکی مورد­مطالعه شامل DSWRC-TW، DSWRC-B، λBC، nvG و bC دارای دقت پیش­بینی متوسط بودند (R2 در محدوه­ای از 40/0 تا 59/0). نتایج همچنین نشان داد که توابع انتقالی طیفی (STFs) پیشنهادی، در برآورد Dpsd دارای دقتی متوسط (RPD معادل 40/1) و در برآورد DSWRC-TW، DSWRC-B، λBC، nvG و bC دارای دقتی ضعیف (RPD در محدوه­ای از 13/1 تا 37/1) می­باشند. بطورکلی نتایج این پژوهش نشان داد، برغم دقت نسبتاً کمتر توابع پارامتریک طیفی نسبت به توابع انتقالی خاک، استفاده از داده‌های طیفی خاک به­دلیل برآورد همزمان چند پارامتر، هزینه، زمان و داده­برداری صحرایی کمتر می­تواند به‌عنوان روشی غیرمستقیم، سریع و نوین (بخصوص با توسعه پایگاه­های اطلاعاتی خاکی و هچنین توسعه کتابخانه­های طیفی) در برآورد پارامترهای مدل‌های فرکتالی و تجربی SWRC مورد استفاده قرار گیرد.

کلیدواژه‌ها

عنوان مقاله [English]

Parameter Estimation of Fractal and Experimental Models of Soil Water Retention Curve Using Pedotransfer and Spectrotransfer Functions

نویسندگان [English]

  • Seyedeh Vida Hosseini
  • Masoud Davari
  • Naser Khaleghpanah

Department of Soil Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

چکیده [English]

Over the last decades, soil spectral data as a rapid, low-cost, and non-destructive method has been widely applied to estimate basic soil properties. In this study, the feasibility of using spectrotransfer functions (STFs) and pedotransfer functions (PTFs) was explored to estimate the parameters of fractal and experimental models of Soil Water Retention Curve (SWRC). For this purpose, a number of 100 soil samples were collected and their spectral reflectance over 350-2500 nm region were measured using a handheld spectroradiometer apparatus. Some soil physical properties and parameters obtained from fitting fractal and experimental models of SWRC to the measured data were determined. After spectral preprocessing, stepwise multiple linear regression was applied to derive PTFs and STFs using basic soil properties and soil spectral reflectance as input, respectively. According to the results, the parametric PTFs had high accuracy in estimating the fractal dimension of the soil particle size distribution (Dpsd) (R2 = 0.96), while the derived parametric functions had moderate predictive accuracy in estimating other studied fractal and hydraulic parameters including DSWRC-TW, DSWRC-B, λBC, nvG and bC (R2 = 0.40 – 0.59). The results also showed that the proposed spectral transfer functions (STFs) had moderately accuracy in estimating Dpsd (RPD = 1.40) and had poor accuracy in estimating DSWRC-TW, DSWRC-B, λBC, nvG and bC (RPD = 1.13 – 1.37). Overall, the results of this study showed that despite of the relatively lower accuracy of spectral parametric functions compared to pedotransfer functions, the use of soil spectral data due to simultaneous estimation of several parameters, lower cost, less time and field data (especially with development of soil information databases and spectral libraries), can be used as an indirect, rapid and novel method in estimating parameters of fractal and experimental models of SWRC.

کلیدواژه‌ها [English]

  • Spectral Reflectance
  • Estimation
  • Stepwise Multiple Linear Regression
  • Soil physical properties
Aldabaa A.A.A., Weindorf D.C., Chakraborty S., Sharma A., and Li B. 2015. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma, 239: 34-46.
Amirabedi H., Asghari Sh., Mesri Gandoshmin T., Balandeh N., and Johari E. 2019. Estimating the soil saturated hydraulic conductivity in Ardabil Plain soils using artificial neural networks and regression models. Applied Soil Research, 7(4):124-136. (In Persian)
Arya L.M., and Paris J.F. 1981. A physicoemprical model to predict soil moisture characteristics from particle-size distribution and bulk density data. Soil Science Society of America Journal, 45: 1023-1030.
Babaeian E., Homaee M., Montzka C., Vereecken H., and Norouzi A.A. 2015a. Towards retrieving soil hydraulic properties by hyperspectral remote sensing. Vadose Zone Journal. 14(3): 1-17.
Babaeian E., Homaee M., Vereecken H., Montzka C., Norouzi, A.A., and van Genuchten M.T. 2015b. A comparative study of multiple approaches for predicting the soil–water retention curve: hyperspectral information vs. basic soil properties. Soil Science Society of America Journal, 79: 1043–1058.
Bayat H., Neyshaburi M.R., Mohammadi K., Nariman-Zadeh N., Irannejad M., and Gregory A.S. 2013. Combination of artificial neural network and fractal theory to predict soil water retention curve. Computers and Electronics in Agriculture, 92: 92-103.
Bird N.R.A., Perrier E., and Rieu M. 2000. The water retention function for a model of soil structure with pore and solid fractal distributions. European Journal of Soil Science, 51: 55-63.
Blaschek M., Roudier P., Poggio M., and Hedley C.B. 2019. Prediction of soil available water holding capacity from visible near infrared reflectance spectra. Scientific Reports, 9:12833.
Bouma J. 1989. Using soil survey data for quantitative land evaluation. Advances in soil science, 177-213.
Brooks R.H., and Corey A.T. 1964. Hydraulic properties of porous media. Colorado State University. Hydrology Papers, 3: 1-27
Campbell G.S. 1974. A simple method for determining unsaturated conductivity from moisture retention data. Soil Science, 117: 311-314.
Chang C.W., and Laird D.A. 2002. Near-infrared reflectance spectroscopic analysis of soil C and N. Soil Science, 167(2): 110–116.
Clark R.N., King T.V., Klejwa M., Swayze G.A., and Vergo N. 1990. High spectral resolution reflectance spectroscopy of minerals. Journal of Geophysical Research: Solid Earth, 95(B8): 12653-12680.
Dane J.H., and Topp, C.G. 2002. Methods of Soil Analysis Part 4: Physical Methods. SSSA Book Series. Soil Science Society of America, Madison, WI. 1692p.
Davari M., Karimi S.A., Bahrami H.A., Hossaini M.T., and Fahmideh S. 2021. Simultaneous prediction of several soil properties related to engineering uses based on laboratory Vis-NIR reflectance spectroscopy. Catena, 197, 104987.
Davari M., Zalvaee Z., and Mahmoodi M.A. 2019. A comparison between empirical and fractal models fitted to the measured soil moisture characteristic curve data. Iranian journal of Soil and Water Research, 50(4): 862-847. (In Persian)
Esbensen K.H. 2006. Multivariate Data Analysis. CAMO Software AS. 5th Edition. 589p.
Fahmideh S., Davari M., Mosaddeghi M.R., and Sharifi Z. 2019. Performance evaluation of reflectance spectroscopy for estimation of soil organic carbon content in Zrebar lake watershed, Kurdistan province. Journal of Water and Soil Conservation, 26(6): 59-78. (In Persian)
Fazeli Sangani M., and Pilehvar Shahri A.R. 2013. Estimation of soil water retention curve by using fractal dimension of soil particle size distribution. Watershed Management Research, 26, 2(99): 126-132. (In Persian)
Ghanbarian-Alavijeh B., and Millán H. 2010. Point pedotransfer functions for estimating soil water retention curve. International Agrophysics, 24(3): 243-251.
Ghanbarian-Alavijeh B., Millan H., and Huang G. 2011. A review of fractal, prefractal and pore-solid-fractal models for parameterizing the soil water retention curve. Canadian Journal of Soil Science, 91(1): 1-14.
Gomez C., Lagacherie P., and Coulouma G. 2008. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma, 148(2): 141–148.
Hamilton L.C. 1990. Modern data analysis. A First Course in Applied Statistics. Brooks/Cole Publishing Co. Pacific Grove, CA, USA. 684p.
Homaee M., and Farrokhian Firouzi A., 2008. Deriving point and parametric pedotransfer functions of some gypsiferous soils. Soil Research, 46(3): 219-227.
Huang G., and Zhang R. 2005. Evaluation of soil water retention curve with the pore–solid fractal model. Geoderma, 127(1): 52-61.
Huang G.H., Zhang, R.D., and Huang Q.Z. 2006. Modeling soil water retention curve with a fractal method. Pedosphere, 16(2): 137-146
Janik L.J., Merry R.H., Forrester S.T., Lanyon D.M., and Rawson A. 2007. Rapid prediction of soil water retention using mid infrared spectroscopy. Soil Science Society of America Journal. 71(2): 507-514.
Kahkhamoghadam P., and Sepaskhah A.R. 2017. Evaluation three fractal model to determine soil water retention curve. Irrigation & Water Engineering, 7(26): 28-45. (In Persian)
Khodaverdiloo H., Homaei M., van Genuchten M. Th., and Ghorbani Dashtaki S. 2011. Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology, 399: 93-99.
Kravchenko A., and Zhang R. 1998. Estimating the soil water retention from particle-size distribution: a Fractal approach. Soil Science, 163(3): 171-179.
Leon L., Allan W., Fylstra D., Lasdon L., Watson J., and Warren A. 1998. Design and use of the Microsoft excel solver, Interfaces (Providence), 28(5): 29-55.
Leone A.P., Leone G., Leone N., Galeone C., Grilli E., Orefice N., and Ancona V. 2019. Capability of diffuse reflectance spectroscopy to predict soil water retention and related soil properties in an irrigated lowland district of southern Italy. Water, 11, 1712.
Liu X., Xu J., Zhang M., Si B., and Zhao K. 2008. Spatial variability of soil available Zn and Cu in paddy rice fields of China. Environmental Geology, 55(7): 1569–1576.
Mertens J., Stenger R. and Barkle G.F. 2006. Multi objective inverse modeling for soil parameter estimation and model verification. Vadose Zone Journal, 5: 917-933.
Minasny B., and McBratney A.B. 2007. Estimating the water retention shape parameter from sand clay content. Soil Science Society of America Journal, 71(4): 1105-1110.
Minasny B., McBratney A.B., and Bristow K.L. 1999. Comparison of different approaches to the development of pedotransfer function for water-retention curves. Geoderma, 93: 225-253.
Ostovari Y., and Beigi Harchegni H. 2013. Pedotransfer functions for estimating soil volumetric moisture content based on soil fractal dimension. Journal of Water and soil, 27(3): 630-641.
Ostovari Y., Faryabi A., and Moosavi A.A. 2017. Assessment and comparison of two sets of pedotransfer functions for prediction of some points of soil moisture characteristic curve. Journal of Water Research in Agriculture, 31(2): 233-243. (In Persian)
Perfect E. 1999. Estimating soil mass fractal dimensions from water retention curves. Geoderma, 88(3): 221-231.
Pinheiro É.F., Ceddia M., Clingensmith C., Grunwald S., and Vasques G. 2017. Prediction of soil physical and chemical properties by visible and near-infrared diffuse reflectance spectroscopy in the Central Amazon. Remote Sensing, 9, 293.
Pittaki-Chrysodonta Z., Moldrup P., Knadel M., Iversen B.V., Hermansen C., Greve M. H., and de Jonge L.W. 2018. Predicting the campbell soil water retention function: comparing visible–near‐infrared spectroscopy with classical pedotransfer function. Vadose Zone Journal, 17(1): 1-12.
Rezghi Z., Homaee M., and Noroozi A. 2020. Quantitative estimation of soil texture components using spectroscopy in the visible-near infrared region. Watershed Engineering and Management, 11(4): 1033-1043. (In Persian)
Rieu M., and Sposito G. 1991. Fractal fragmentation, soil porosity, and soil water properties: I. theory. Soil Science Society of America Journal, 55(5): 1231-1238.
Sadikhani M. R. 2019. Prediction of cation exchange capacity using fractal dimension of soil particle size distribution. Applied Soil Research, 7 (2):56-66. (In Persian)
Santra P., Sahoo R.N., Das B.S., Samal R.N., Pattanaik A.K., and Gupta V.K. 2009. Estimation of soil hydraulic properties using proximal spectral reflectance in visible, near-infrared, and shortwave-infrared (VIS–NIR–SWIR) region. Geoderma, 152:338–349.
Schaap M.G., Leij F.J., and. van Genuchten M.Th. 1998. Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Society of America Journal, 62:847–855.
Schneider W.E., and Young R. 1997. Spectroradiometry Methods. In: DeCusatis C. (Ed.), Handbook of Applied Photometry. American Institute of Physics, pp. 239-288.
Shirazi M.A., and Boersma L. 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48: 142-147.
Sparks D.L., Page A.L., Helmke P.A., and Loeppert R.H. 1996. Methods of Soil Analysis Part 3: Chemical methods. SSSA Book Series. Soil Science Society of America, Madison, WI. 1390p.
Stenberg B. 2010. Effects of soil sample pretreatments and standardised rewetting as interacted with sand classes on Vis-NIR predictions of clay and soil organic carbon. Geoderma, 158: 15-22.
Su Y.Z., Zhao H.L., Zhao W.Z., and Zhang T.H. 2004. Fractal features of soil particle size distribution and the implication for indicating desertification. Geoderma, 122(1): 43-49.‏
Tranter G., Minasny B., McBratney A.B., Rossel R.A., and Murphy B.W. 2008. Comparing spectral soil inference systems and mid-infrared spectroscopic predictions of soil moisture retention. Soil Science Society of America Journal, 72(5): 1394-1400.
Tyler S.W., and Wheatcraft S.W. 1990. Fractal processes in soil water retention. Water Resources Research, 26: 1047-1054.
Van den Berg M., Klamt E., Van Reeuwijk L.P., and Sombroek W.G. 1997. Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma, 78(3-4): 161-180.
Van Genuchten M.T. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892-898.
ViewSpec ProTM User Manual, 2008. ASD Document 600555 Rev.A, Boulder, CO 80301.
Viscarra Rossel R.V., Cattle S.R., Ortega A., and Fouad Y. 2009. In situ measurements of soil color, mineral composition and clay content by vis–NIR spectroscopy. Geoderma, 150(3–4): 253–266.
Viscarra Rossel R., McGlynn R., and McBratney A. 2006. Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma, 137: 70-82.
Wosten J.H.M., Pachepsky Y.A., and Rawls W.J. 2001. Pedotransfer function: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrolology, 251: 123-150.
Zhang Z., Ding J., Wang J., and Ge X. 2020. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. Catena, 185, 104257.