ارزیابی تغییرات هدایت هیدرولیکی اشباع در لایه‌های سطحی و زیرسطحی خاک‌های لسی شرق استان گلستان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابغ طبیعی، دانشگاه گنبد کاووس

2 گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی، دانشگاه گنبدکاووس

3 استادیار گروه مرتع و آبخیزداری، دانشکده کشاورزی و منابع طبیعی دانشگاه گنبد کاووس

4 گروه چوب وکاغذ، دانشکده کشاورزی و منابع طبیعی دانشگاه گنبد کاووس (GKU)

چکیده

هدایت هیدرولیکی خاک یکی از پارامترهای مهم در برآورد فرسایش‎پذیری خاک، جریان آب در خاک، رواناب و طراحی سیستم­های زهکشی می­باشد. این پژوهش به ‌منظور تعیین هدایت هیدرولیکی اشباع (Ks) سطحی و زیرسطحی خاک‌های لسی حوزه آبخیز آق­امام (2) واقع در شمال شرق استان گلستان انجام ‌شد. بدین منظور از خاک سه تیپ موجود در این حوزه شامل تیپ‌های تپه، فلات لسی و تراس آبرفتی در دو لایه سطحی و زیرسطحی نمونه‌برداری شد. در این پژوهش علاوه بر تعیین Ks به روش بارافتان، برخی ویژگی‌های فیزیکوشیمیایی خاک نظیر شوری، آهک خنثی، مواد آلی و بافت خاک در آزمایشگاه اندازه‌گیری و ارتباط آنها با Ks بررسی‌‌شد. تمامی نقشه‌ها مربوط به پراکنش  Ksسطحی و زیرسطحی و همچنین برخی ویژگی‌های فیزیکوشیمیایی خاک در محیط GIS و از روش IDW ترسیم گردید. نتایج نشان داد که تغییرات مکانی Ks در هر دو لایه ارتباط مستقیمی باهم دارند و در لایه سطحی بیشتر از لایه زیرسطحی می‌باشد. همچنین میانگین مقدار Ks به‌جز در تیپ تراس آبرفتی که مقدار آن به‌طورکلی کم است (cm.h-1 9/0) در دو تیپ فلات رسی و تپه نسبتا بالاست (cm.h-1 9/3). نتایج آماری حاصل از روش رگرسیون چندگانه خطی و روش گام­به­گام نشان داد که از بین متغیرهای مورد بررسی، به ترتیب دو پارامتر مواد آلی و آهک خنثی بیشترین تاثیر را در تعیین مقدار Ks سطحی (R2=0.9556) و زیرسطحی (R2=0.8607) در منطقه مورد مطالعه دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Saturated Hydraulic Conductivity Changes in Surface and Subsurface Layers of Loess Soils of East of Golestan Province

نویسندگان [English]

  • Soghra Izanloo 1
  • Mojtaba Ghareh Mahmoodlu 2
  • Nader Jandaghi 3
  • HOJJAT GHORBANI VAGHEI 4
1 MSc in watershed management, Gonbad Kavous University, Gonbad, Iran
2
3 Assistant Prof. at Rangeland and watershed management, Faculty of Agriculture & Natural Resources, Gonbad Kavous University
4 Natural resources department of GKU
چکیده [English]

Soil hydraulic conductivity is one of the important parameters to estimate soil erodibility, soil water flow, estimate runoff, and design drainage systems. This study was carried out to determine the hydraulic saturation (Ks) of surface and subsurface loess soils of Aghemam watershed (2) that located in the northeast of Golestan province. For this purpose, three types of soils in this area including hill, loess plateau and alluvial terrace in two surface and subsurface layers were sampled. In this study, in addition to determining Ks using the falling head method, some physicochemical properties of soil samples such as salinity, neutral lime, organic matter and soil texture were measured in the laboratory and their relationship with Ks was investigated. Then, the spatial variations of surface and subsurface saturation hydraulic conductivity in the study area were plotted using GIS software and IDW method. The spatial variations of Ks in both layers indicated its direct relationship between the two layers. However, the value of this parameter in the surface layer is more than for the subsurface layer. Also, the amount of Ks is relatively high in the two types of loess plateau and hill (3.9 cm/h), except in the alluvial terrace type, which is generally low (0.9 cm/h). The statistical results of linear multiple regression and stepwise methods showed that among the variables studied, the organic matter and neutral lime parameters, respectively, have the most impact on determining the amount of surface Ks (R2 = 0.9556) and subsurface (R2=0.8607) in the study area.

کلیدواژه‌ها [English]

  • Soil Saturated Hydraulic Conductivity
  • Falling Head Method
  • Loess Soil
  • Soil Physicochemical Properties
  • Watershed
Abedini M.R., Khankeshipour G., Davatgar N., Shahdi Komele, A., Abedini, H., Khankeshipour, A., Saber Samiei D., and Kheirandish I., 2019. Fully automatic computer system for measuring saturated hydraulic conductivity of soil using falling head method. Agricultural Research Education and Extention Organization. COI code of research project: R-1103512. (In Persian)
-Ajmi M., Khormali F., and Ayobi Sh. 2010. Application of neural network for prediction of earthen Dam Peak Breach Outflow, and breach time. Iranian Journal of Soil and Water Research, 39(1): 15-30. (In Persian)
Amiri Z., Khormali F., and Choghi B. 2019. Distribution map of the different lithologic units in loess plateau of eastern Golestan by using remote sensing technique; Aghband research area. Quaternary journal of Iran, 5(1): 47-58. (In Persian)
Bagheri M., Izadpanah Z., Boromand-Nasab S., and Khorramian M. 2016. Estimation of hydraulic conductivity of saturated and unsaturated soils measured by two methods of tillage corn in summer in the northern province of Khuzestan. Journal of Irrigation Sciences and Engineering, 39(2): 39-48. (In Persian)
Becker R., Gebremichael M., and Märker M. 2018. Impact of soil surface and subsurface properties on soil saturated hydraulic conductivity in the semi-arid Walnut Gulch Experimental Watershed, Arizona, USA. Geoderma, 322: 112-120.
Bell F.G. 2007. Engineering Geology, Butterwotth-Heinemann. Oxford, UK, 581p.
Celik I. 2005. Land-use effects on organic matter and physical properties of soil in a Southern Mediterranean highland of Turkey. Soil and Tillage Research, 83: 270-277.
Feiznia S. 2008. Applied Sedimentology (with emphasize on soil erosion and sediment production), University of Gorgan press, 360p. (In Persian)  
Gee G.W., and Bauder J.W. 1986. Particle Size Analysis. In: Methods of Soil Analysis, Part A. Klute (ed.). 2Ed., Vol. 9 nd. Am. Soc. Agron., Madison, WI, pp. 383-411.
Hatami Golmakani P., Sheikh V., and Hoseinali zade M. 2017. The effect of measurement methods on saturated hydraulic conductivity in eastern loess lands of Golestan province. Soil Management and Sustainable Production, 6(4): 87-102. (In Persian) 
Heirkan -Arakhiz-Ara Company. 2007. Evaluation of watershed management operations in Aqhemam (2) and Shordareh watersheds of Golestan province. General Department of Natural Resources of Golestan Province. Watershed management. 320 p.
Kelishadi, H., Mosaddeghi, M., Hajabbasi, M., and Ayoubi, S. 2014. Evaluating and developing pedotransfer functions to predict soil saturated hydraulic conductivity at landscape scale in central Zagros. Applied Soil Research, 1(2), 16-33. (In Persian) 
Lado M., Paz A., and Ben-Hur M. 2004. Organic matter and aggregate size interactions in infiltration, seal formation and soil loss. Soil Sciences Society of American Journal, 68: 935-942.
Maghami Y., Ghazavi, R. Vali A.A., and Sharafi S. 2011. Evaluation of spatial interpolation methods for water quality zoning using GIS Case study, Abadeh Township. Geography and Environmental Planning, 42(2):171-182.
Mahmoodi M.A., Mirzaie M., and Pir Bavaghar M. 2018. Assessment of soil organic matter status using regression kriging technique and Landsat images. Iranian Journal of Soil and Water Research, 49(5), 1107-1117.
Mirzashahi K., and Bazargan K. 2015. Soil organic matter management, Soil and Water Resource Institute, Technical Journal 535, 16p. (In Persian) 
Moosavi A.A., and Omidifard M. 2016. Spatial variability and geostatistical prediction of some soil hydraulic coefficients of a calcareous soil. Journal of Water and Soil, 30(3): 730-742. (In Persian) 
Navabian M., Liaghat A.M., and Homaei M. 2003. Deviation of pedo-transfer functions to estimate saturated hydraulic conductivity. Journal of Agricultural Engineering Research, 4(16): 1-12. (In Persian) 
Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon and organic matter: In: A.L. Page, R.H. Miller and D.R. Keeney) Methods of soil analysis. Part 2 Chemical and Microbiological Properties, pp. 539-579.
Nikpour N, Fotohi S, Negaresh H, and Sistani M. 2017. Morphometric of gully erosion (ditch) and factors affecting the development of the basin plains on southern West Ilam Cham Fazel, Jsaeh. 4 (1): 97-112. (In Persian) 
Omidifar M., and Moosavi, A.A. 2015. Prediction of some hydraulic properties of calcareous soils of Bajgah Region Fars province using regression pedotransfer functions. Iranian Journal of Soil Research, 29 (1): 83-92. (In Persian) 
Parsi S., Pazhohesh M., Gharahi N., and Abdollahi K. 2019. Effect of lime on soil wetting depth in different slopes using artificial sprinkler (Case study: Qalat Range, Shahrekord), 1st international and 4th national conference on conservation of nraural resourcesa and environment, 27-28 Aguste, University of Mohaghegh Ardabili. (In Persian) 
Rahmati S., Vaezi A.R., and Bayat H. 2019. Study of saturated hydraulic conductivity variations in different aggregate size distributions in an agricultural soil. Journal of Water and Soil Science, 23 (1): 31-42. (In Persian) 
Raoof M., Nazemi A.H., Sadraddini S.A.A., and Maroofi S. 2010. Estimating saturated and unsaturated hydraulic conductivities of sloping lands under steady and transient states. Journal of Water and Soil Scince, 1/20(20): 34-47. (In Persian) 
Razzaghi F., and Rezaei N. 2017. Effects of different levels of biochar on soil physical properties with different textures. Journal of Water and Soil Resources Conservation, 7(1): 75-88. (In Persian)   
Sadeghian N., and Vaezi A. 2019. Selectivity of particles through rill erosion in different soil textures. Journal of Water and Soil Science, 23(2):1-12. (In Persian) 
Sarvati M.R., Ghoddousi J., and Dadkhah M. 2008. Factors effecting initiation and advancement of gully erosion in loesses. Pajouseh & Sazandeghi, 75:20-33. (In Persian) 
Schwen A., Zimmermann M., and Bodner G. 2014. Vertical variations of soil hydraulic properties within two soil profiles and its relevance for soil water simulations. Journal of Hydrology, 516:169-181.
Shaker Shahmarbeigloo P., Khodaverdiloo H., and Momtaz, H. 2019. Testing of new inputs to predict near-saturated soil hydraulic conductivity. Applied Soil Research, 7(1): 54-69. (In Persian) 
Shirazi, E. 2016. Statistical Software Training Minitab 16. Noruzi Publications. 306 p. (In Persian) 
Soracco C.G., Lozano L.A., Sarli G.O., Gelati P.R., and Filgueira R.R. 2010. Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments. Soil and Tillage Research, 109(1):18-22.
Vaezi A.R. 2014. Modeling runoff from semi-arid agricultural lands in Northwest Iran. Pedosphere, 24: 595-604.
Wang W., Wang Y., Sun Q., Zhang M., Qiang Y.,and Liu M. 2018. Spatial variation of saturated hydraulic conductivity of a loess slope in the South Jingyang Plateau, China. Engineering Geology, 236: 70-78.
Xu D. and Mermoud A. 2003. Modeling the soil water balance based on time-dependent hydraulic conductivity under different tillage practices, Agricultural Water Management, 63:139-151.
Yunqiang W., Shao M., Liu Z., and Horton R. 2013. Regional-scale variation and distribution patterns of soil saturated hydraulic conductivities in surface and subsurface layers in the loessial soils of China. Journal of hydrology, 487: 13-23.
Zhang Y., and Schaap M.G. 2019. Estimation of saturated hydraulic conductivity with pedotransfer functions: A review. Journal of Hydrology, 575:1011-1030.