برآورد مکانی ضریب تغییرات ذخیره کربن آلی خاک با استفاده از داده‌های طیفی و رقومی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 علوم خاک، دانشگاه گیلان، رشت، ایران

2 گروه علوم و مهندسی خاک، دانشگاه گیلان

3 دانشیار گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران.

4 عضو هیئت علمی دانشگاه ارومیه

5 استادیار موسسه تحقیقات خاک و آب، کرج، ایران.

چکیده

موجودیت خاک وابسته به پارامترهای فیزیکی، شیمیایی و بیولوژیکی آن است. ذخیره کربن آلی خاک یکی از عوامل کلیدی خاک است که تغییرات آن برروی تمامی این پارامترها اثر دارد. در این راستا، این تحقیق به­منظور پهنه­بندی ضریب تغییرات ذخیره کربن آلی خاک در بخشی از حوضه آبخیز سیمینه­رود انجام شد. نمونه­برداری از خاک با استفاده از روش مکعب لاتین مشروط در 210 نقطه از عمق 30-0 سانتی­متری خاک سطحی انجام و مقدار کربن آلی خاک اندازه­گیری شد. سپس، ذخیره کربن آلی خاک تعیین گردید. در مرحله بعد، مدل جنگل تصادفی اجرا و پارامترهای مؤثر برای تخمین ذخیره کربن آلی خاک شناسایی شد (در این مرحله جهت مدل­سازی ذخیره کربن آلی خاک از شاخص بازتابش طیفی استاندارد شده و داده­های استخراجی از مدل رقومی ارتفاعی استفاده شد). در انتها، روش جنگل تصادفی 100 بار اجرا شد و پهنه­بندی مقادیر بیشترین (صدک 95)، کمترین (صدک 5) و میانگین ذخیره کربن آلی خاک برای هر پیکسل با قدرت تفکیک مکانی 30 ×30 متر به­دست آمد. جهت به­دست آوردن ضریب تغییرات با ضریب اطمینان 90 درصد، صدک 95 و 5 درصد از هم کسر شد و ضریب تغییرات با استفاده از تقسیم آن به میانگین به­دست آمد. نتایج نشان داد که ضریب دقت (R2) مدل جنگل تصادفی 81/0 و ضرایب صحت شامل RMSE و MAE به­ترتیب 44/0 و 34/0 ((kg m-2 می­باشد. نتایج پهنه­بندی ضریب تغییرات برای مقدار ذخیره کربن آلی خاک منطقه مورد مطالعه نشان داد که مقدار تغییرات این پارامتر بین 9/3­-55 درصد متغیر می­باشد. بر اساس نتایج حاصل از پهنه­بندی ضریب تغییرات منطقعه مورد مطالعه، میانگین بیشترین و کمترین میزان تغییرات در کاربری زراعت دیم و مراتع مشاهده شد. احتمالاً کشت مداوم و بازگشت کم ماده آلی در زراعت دیم، باعث افزایش ضریب تغییرات ذخیره کربن آلی خاک در کاربری زراعت دیم شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial Estimation of Coefficient of Variation of Soil Organic Carbon Stocks Using Spectral and Digital Data

نویسندگان [English]

  • Kamal Khosravi Aqdam 1
  • Nafiseh Yaghmaeian Mahabadi 2
  • Hassan Ramezanpour 3
  • Salar Rezapour 4
  • Zohreh Mosleh 5
1 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, IRAN.
2 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, IRAN.
3 Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, IRAN.
4 Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, IRAN
5 Soil and Water Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, IRAN.
چکیده [English]

Soil entities depends on its physical, chemical, and biological characteristics. Soil organic carbon (SOC) stocks is one of the main factors whose variations affect all these parameters. So, this study was performed for mapping the coefficient of variations (CV) of SOC stocks in some parts of the Simineh Roud watershed. Soil sampling performed using the Latin Hypercube method (cLHm) at 210 points from 0 to 30 cm of the soil surface, and the organic carbon was measured, then SOC stocks was calculated. In the next step, using Random Forest (RF) model the effective parameters were calculated (in this step, to model the SOC stocks, standardized spectral reflectance index and extracted data from digital elevation model were used). Finally, RF model was performed 100 times, as well as mapping of the values of upper (95th %), lower (5th %), and average SOC stocks for each pixel with a spatial resolution of 30 × 30 m was obtained. To obtain the CV with a confidence coefficient of 90%, the percentile of 95% and 5% were subtracted. The CV was obtained by dividing it by the mean. The results showed that the accuracy coefficient (R2) for modeling SOC stocks by the RF model was 0.81 and the mean accuracy coefficients including RMSE and MAE were 0.44 and 0.34 (kg/m2), respectively. Also, the results of CV mapping for the amount of SOC stocks in the study area showed that the amount of variation of this parameter varies between 3.9- 55%. Based on the results of the CV mapping of the study area, the most and lowest variations were observed in dry farming and grasslands, respectively. Probably, continuous cultivation and low return of organic matter in dry farming have increased the CV of SOC stocks in dry farming use.

کلیدواژه‌ها [English]

  • Dry farming
  • Latin Hypercube method
  • Organic carbon
  • Random Forest
Babu S., Mohapatra K., Yadav G.S., Lal R., Singh R., Avasthe R., Das A., Chandra P., Gudade B., Kumar A. 2020. Soil carbon dynamics in diverse organic land use systems in North Eastern Himalayan ecosystem of India. Catena. 194, 104785.
Balesdent J., Chenu C., Balabane M. 2000. Relationship of soil organic matter dynamics to physical protection and tillage. Soil and tillage research. 53(3-4), 215-230.
Basile-Doelsch I., Brun T., Borschneck D., Masion A., Marol C., Balesdent J. 2009. Effect of landuse on organic matter stabilized in organomineral complexes: A study combining density fractionation, mineralogy and δ13C. Geoderma. 151(3-4), 77-86.
Chen D., Zhang J., Chen J. 2010. Adsorption of methyl tert-butyl ether using granular activated carbon: Equilibrium and kinetic analysis. International Journal of Environmental Science & Technology. 7(2), 235-242.
Chi M., Feng R., Bruzzone L. 2008. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Advances in space research. 41(11), 1793-1799.
Deng L., Sweeney S., Shangguan Z. 2014. Long‐T erm Effects of Natural Enclosure: Carbon Stocks, Sequestration Rates and Potential for Grassland Ecosystems in the Loess Plateau. CLEAN–Soil, Air, Water. 42(5), 617-625.
Ellert B., Janzen H., Entz T. 2002. Assessment of a method to measure temporal change in soil carbon storage. Soil Science Society of America Journal. 66(5), 1687-1695.
Gomes L.C., Faria R.M., de Souza E., Veloso G.V., Schaefer C.E.G., Fernandes Filho E.I. 2019. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma. 340, 337-350.
Guo L., Zhao C., Zhang H., Chen Y., Linderman M., Zhang Q., Liu Y. 2017. Comparisons of spatial and non-spatial models for predicting soil carbon content based on visible and near-infrared spectral technology. Geoderma. 285, 280-292.
Guo Z., Adhikari K., Chellasamy M., Greve M.B., Owens P.R., Greve M.H. 2019. Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma. 340, 303-312.
Hengl T. 2006. Finding the right pixel size. Computers & geosciences. 32(9), 1283-1298.
Hong Y., Chen S., Liu Y., Zhang Y., Yu L., Chen Y., Liu Y., Cheng H., Liu Y. 2019. Combination of fractional order derivative and memory-based learning algorithm to improve the estimation accuracy of soil organic matter by visible and near-infrared spectroscopy. Catena. 174, 104-116.
Hussain S., Sharma V., Arya V.M., Sharma K.R., Rao C.S. 2019. Total organic and inorganic carbon in soils under different land use/land cover systems in the foothill Himalayas. Catena. 182, 104104.
Iranian soil and water institute. 1991. Iranian soil map (1:1000.000).
Jin X., Li Z., Yang G., Yang H., Feng H., Xu X., Wang J., Li X., Luo J. 2017. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm. ISPRS Journal of Photogrammetry and Remote Sensing. 126, 24-37.
Keskin H., Grunwald S., Harris W.G. 2019. Digital mapping of soil carbon fractions with machine learning. Geoderma. 339, 40-58.
Khosravi Aqdam K., Miran N., Mohammadi Khajelou Y., Khosravi Aqdam M., Asadzadeh F. Mosleh Z. 2021. Predicting the spatial distribution of soil mineral particles using OLI sensor in northwest of Iran. Environmental Monitoring and Assessment. 193(6), 377.
Kuhn M., Johnson K. 2013. Applied predictive modeling, 26. Springer.
Kunkel V., Hancock G., Wells T. 2019. Large catchment-scale spatiotemporal distribution of soil organic carbon. Geoderma. 334, 175-185.
Ladd J., Foster R., Skjemstad J. 1993. Soil structure: carbon and nitrogen metabolism. Soil Structure/Soil Biota Interrelationships. 401-434.
Ma K., Zhang Y., Tang S., Liu J. 2016. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai–Tibet Plateau. Catena. 144, 102-108.
Maia S.M., Ogle S.M., Cerri C.C., Cerri C.E. 2010. Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil and Tillage Research. 106(2), 177-184.
Malone B.P., Minasny B., McBratney A.B., 2017. Using R for digital soil mapping, 35. Springer.
McBratney A.B., Santos M.M., Minasny B., 2003. On digital soil mapping. Geoderma. 117(1-2), 3-52.
Minasny B., McBratney A.B., Malone B.P., Wheeler I. 2013. Digital mapping of soil carbon. Advances in agronomy. 118, 1-47.
Nelson D., Sommers L.E. 1983. Total carbon, organic carbon and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties 9, 539-579.
Paustian K., Collins H.P., Paul E.A. 2019. Management controls on soil carbon, Soil organic matter in temperate agroecosystems. CRC Press, pp. 15-49.
Richards J.A. 1986. Error correction and registration of image data, Remote Sensing Digital Image Analysis. Springer. pp. 33-68.
Schumacher B.A. 2002. Methods for the determination of total organic carbon (TOC) in soils and sediments.
Sharma V., Mir S.H., Arora S. 2009. Assessment of fertility status of erosion prone soils of Jammu Siwaliks. Journal of Soil and Water Conservation. 8(1), 37-41.
Sun X.-L., Minasny B., Wang H.-L., Zhao Y.-G., Zhang G.-L., Wu Y.-J. 2021. Spatiotemporal modelling of soil organic matter changes in Jiangsu, China between 1980 and 2006 using INLA-SPDE. Geoderma. 384, 114808.
Tian G., Granato T., Cox A., Pietz R., Carlson Jr C., Abedin Z. 2009. Soil carbon sequestration resulting from long‐term application of biosolids for land reclamation. Journal of Environmental Quality. 38(1), 61-74.
Wang B., Waters C., Orgill S., Gray J., Cowie A., Clark A., Li Liu D. 2018. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of the Total Environment. 630, 367-378.
Wang S., Fan J., Zhong H., Li Y., Zhu H., Qiao Y., Zhang H. 2019. A multi-factor weighted regression approach for estimating the spatial distribution of soil organic carbon in grasslands. Catena. 174, 248-258.
Wei J.-B., Xiao D.-N., Zeng H., Fu Y.-K. 2008. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northeastern China. Environmental geology. 53(8), 1663-1672.
Wood S.A., Sokol N., Bell C.W., Bradford M.A., Naeem S., Wallenstein M.D., Palm C.A. 2016. Opposing effects of different soil organic matter fractions on crop yields. Ecological Applications. 26(7), 2072-2085.
Zhang Z., Ding J., Wang J., Ge X. 2020. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices. Catena. 185, 104257.
Zhao M., Yue T., Zhao N., Sun X., Zhang X. 2014. Combining LPJ-GUESS and HASM to simulate the spatial distribution of forest vegetation carbon stock in China. Journal of Geographical Sciences. 24(2), 249-268.
Zhu M., Feng Q., Qin Y., Cao J., Zhang M., Liu W., Deo R.C., Zhang C., Li R., Li B. 2019. The role of topography in shaping the spatial patterns of soil organic carbon. Catena. 176, 296-305.