بررسی سینتیک جذب کادمیم توسط بنتونیت و نانو بنتونیت در حضور هیومیک اسید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی، مشهد، ایران

2 گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد مشهد ایران

3 استادیار گروه علوم خاک دانشکده کشاورزی دانشگاه فردوسی مشهد

چکیده

آلودگی با فلزات سنگین یکی از نگرانی­های عمده زیست محیطی در سراسر جهان است، چرا که این فلزات به دلیل سمی و خطرناک بودنشان تهدیدی برای انسان، حیوان و گیاه می­باشند. کانی­های رسی که جزء اصلی خاک هستند، نقش مهمی در جذب آلاینده­های مختلف از آب ­­و خاک­ ایفا می­کنند. بنتونیت و شکل‌های اصلاح شده آن دارای ظرفیت بسیار بالاتری نسبت به سایر رس­ها برای جذب فلزات سمی دارند. بنابرین آزمایشی در قالب طرح کاملاً تصادفی با آرایش فاکتوریل با سه تکرار انجام شد. تیمارهای آزمایشی شامل زمان (5، 10، 20، 30، 60، 120، 240 دقیقه)، جاذب­های بنتونیت (B) و نانوبنتونیت (NB) (2 گرم بر لیتر) و هیومیک اسید (صفر، 100 و 500 میلی­گرم بر لیتر) بود. نتایج نشان‌دهنده اثر افزایشی هیومیک اسید بر جذب کادمیم به‌وسیله بنتونیت و نانوبنتونیت در زمان­های مختلف می‌باشد. بیشترین مقدار جذب کادمیم در تیمار 500 میلی­گرم بر لیتر هیومیک اسید با میانگین 4370 میلی­گرم بر کیلوگرم توسط جاذب بنتونیت و کمترین مقدار جذب در تیمار با عدم حضور هیومیک اسید 1134 میلی­گرم بر کیلوگرم توسط جاذب بنتونیت مشاهده شد.­ در بررسی معادلات سینتیک جذب کادمیم با توجه به مقادیر R2 ، مناسب­ترین مدل برای برازش جذب سطحی کادمیم توسط دو جاذب بنتونیت و نانوبنتونیت در سه سطح هیومیک اسید، معادله سینتیک شبه درجه دوم (هر سه سطح هیومیک اسید در جاذب بنتونیت و تیمار 100 میلی­گرم بر لیتر هیومیک اسید در جاذب نانو بنتونیت 99/0، در تیمار صفر و 500 میلی­گرم بر لیتر هیومیک اسید به ترتیب 97/0 و 1 بود) می­باشد. نتایج نشان داد که حضور هیومیک اسید می­تواند به طور قابل­توجهی موجب افزایش جذب کادمیم به­وسیله جاذب­ها شود که تاثیر آن در جاذب بنتونیت بیشتر از نانو بنتونیت بود.

کلیدواژه‌ها


عنوان مقاله [English]

Kinetics of Cadmium Adsorption by Bentonite and Nanobentonite in the Presence of Humic Acid

نویسندگان [English]

  • sara shahedi 1
  • amir fotovat 2
  • Reza Khorasani 2
  • Akram Halajnia 3
1
2 Department of Soil Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
3 Assistant Professor, Department of Soil Science, Agricultural College, Ferdowsi University of Mashhad
چکیده [English]

Heavy metals pollution is one of the major environmental concerns in the world, as these metals are a threat to humans, animals, and plants due to their toxicity. Clay minerals which are a major component of the soil, play an important role in the absorption of various contaminants in soil and water. Bentonite (B) and its modified forms have a much higher capacity to adsorb toxic metals than other clays. This experiment was accomplished in a completely randomized design in a factorial arrangement with three replications. The experimental treatments consisted: time (5, 10, 20, 30, 60, 120, 240 min), B and nanobentonite (NB) adsorbents (2 g l-1) and humic acid concentrations (0, 100 and 500 mg l-1). The results showed that humic acid increased Cd adsorption by B and NB in different times. The highest amount of Cd adsorption by B adsorbent was 4370 mg kg-1 recorded in 500 m l-1 humic acid treatment and the lowest amount of adsorption was observed in the absence of humic acid 1134 mg.kg-1 by bentonite adsorbent. Semi second-order kinetic model was significantly fitted to Cd adsorption by B and NB in all of the humic acid concentrations (R2 for all three levels of humic acid in bentonite adsorbent and treatment of 100 mg.l-1 humic acid in nano bentonite adsorbent was 0.99,  for treatment of zero and 500 mg l-1 humic acid was 0.97 and 1.00, respectively). The results of current study showed that humic acid could markedly promote the Cd adsorption by adsorbents, which had a greater effect on the adsorption of B than NB.

کلیدواژه‌ها [English]

  • Kinetics
  • cadmium
  • Bentonite
  • Nanobentonite
  • Nano clay
Abdullahi A.A., Ighalo J., Ajala O., and Ayika S.O. 2020. Physicochemical analysis and heavy metals remediation of pharmaceutical industry effluent using bentonite clay modified by H2SO4 and HCl. Journal of the Turkish Chemical Society Section A: Chemistry7(3), pp.727-744.
Ariabod S., Fotovat A., Khorasani R., and Entezari M. 2019. Effect of titanium dioxide nanoparticles and microparticles on cadmium fixation in soil suspensions in the presence of humic acid. Iranian Soil and Water Research, 50 (2), pp.449-462. (In Persian)
Arias M., Barral M.T., and Mejuto J.C. 2002. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere, 48(10), pp.1081-1088.
Athman S., Sdiri A., and Boufatit M. 2020. Spectroscopic and Mineralogical Characterization of Bentonite Clay (Ghardaïa, Algeria) for Heavy Metals Removal in Aqueous Solutions. International Journal of Environmental Research, 14(1), pp.1-14.
Banat F. A., Al-Bashir B., Al-Asheh S., and Hayajneh O. 2000. Adsorption of phenol by bentonite. Environmental Pollution, 107(3), 391-398.
Bentahar S., Dbik A., El Khomri M., El Messaoudi N., and Lacherai A. 2017. Adsorption of methylene blue, crystal violet and congo red from binary and ternary systems with natural clay: Kinetic, isotherm, and thermodynamic. Journal of Environmental Chemical Engineering, 5(6), pp.5921-5932.
Chatterjee U., Butola B.S. and Joshi M. 2017. High energy ball milling for the processing of organo-montmorillonite in bulk. Applied Clay Science140, pp.10-16.
Chu Y., Khan M.A., Wang F., Xia M., Lei W., and Zhu S. 2019. Kinetics and equilibrium isotherms of adsorption of Pb (II) and Cu (II) onto raw and arginine-modified montmorillonite. Advanced Powder Technology30(5), pp.1067-1078.
Di Natale F., Lancia A., Molino A., Di Natale M., Karatza D., and Musmarra D. 2006. Capture of mercury ions by natural and industrial materials. Journal of Hazardous Materials, 132(2-3), pp.220-225.
Dong Y., Zhao Y., Lin H., and Liu C. 2019. Effect of physical and chemical properties of vanadium slag from stone coal on the form of vanadium. Environmental Science and Pollution Research26(32), pp.33004-33013.
El-Naas M.H., Al-Rub F.A., Ashour I., and Al Marzouqi M. 2007. Effect of competitive interference on the biosorption of lead (II) by Chlorella vulgaris. Chemical Engineering and Processing: Process Intensification, 46(12), pp.1391-1399.
Erfanmanesh M., and Afyuni M. 2013. Environmental Pollution (water, soil and air). Isfahan: Arkan Publication, pp.218-19.
Ghasemi S., and Gholami R.M. 2015. Lead adsorption from synthetic wastewater by prosopis mimosaceae sawdust. Jundishapur Journal of Health Sciences7(1). (In Persian)
Giachetti G., and Sebastiani L. 2006. Metal accumulation in poplar plant grown with industrial wastes. Chemosphere, 64(3), pp.446-454.
Gupta S.S., and Bhattacharyya K.G. 2008. Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management, 87(1), pp.46-58.
Heydari A., Younesi H.A., and Mehraban Z. 2010. Removal of Cd (II), Ni (II), and Pb (II) Ions in an Aqueous Solution by Chemically Modified Nanoporous MCM-41.
Hizal J., and Apak R. 2006. Modeling of cadmium (II) adsorption on kaolinite-based clays in the absence and presence of humic acid. Applied Clay Science, 32(3-4), pp.232-244.
Ho, Y.S. and McKay, G., 1999. Batch lead (II) removal from aqueous solution by peat: equilibrium and kinetics. Process Safety and Environmental Protection, 77(3), pp.165-173.
Ho Y.S., and McKay G. 1998. Kinetic models for the sorption of dye from aqueous solution by wood. Process Safety and Environmental Protection, 76(2), pp.183-191
Jeevanandam J., Barhoum A., Chan Y.S., Dufresne A., and Danquah M.K. 2018. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein Journal of Nanotechnology9(1), pp.1050-1074.
Ji M., Su X., Zhao Y., Qi W., Wang Y., Chen G., and Zhang Z. 2015. Effective adsorption of Cr (VI) on mesoporous Fe-functionalized Akadama clay: optimization, selectivity, and mechanism. Applied Surface Science, 344, pp.128-136.
Kabata-Pendias A., and Pendias H. 2001. Trace elements in soils and plants, 3rd edn CRC Press. Boca Raton, FL, USA.
Ko I., Davis A.P., Kim J.Y., and Kim K.W., 2007. Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid. Journal of Hazardous Materials, 141(1), pp.53-60.
Landry V., Blanchet P., and Riedl B. 2010. Mechanical and optical properties of clay-based nanocomposites coatings for wood flooring. Progress in Organic Coatings, 67(4), pp.381-388.
Li G., Zhang J., Liu J., Sun C., and Yan Z. 2020. Adsorption characteristics of white pottery clay towards Pb (II), Cu (II), and Cd (II). Arabian Journal of Geosciences13(13), pp.1-15.
Li Y., Wang J.D., Wang X.J., and Wang J.F. 2012. Adsorption–desorption of Cd (II) and Pb (II) on Ca-montmorillonite. Industrial & Engineering Chemistry Research, 51(18), pp.6520-6528.
Liu A., and Gonzalez R.D. 1999. Adsorption/desorption in a system consisting of humic acid, heavy metals, and clay minerals. Journal of Colloid and Interface Science, 218(1), pp.225-232.
Liu, P., and Zhang L. 2007. Adsorption of dyes from aqueous solutions or suspensions with clay nano-adsorbents. Separation and Purification Technology58(1), pp.32-39.
Liu W., Zhao C., Wang S., Niu L., Wang Y., Liang S., and Cui Z. 2018. Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations. Research on Chemical Intermediates44(3), pp.1441-1458.
Lopez-Pineiro A., and Navarro A.G. 1997. Potassium release kinetics and availability in unfertilized Vertisols of southwestern Spain. Soil Science, 162(12), pp.912-918.
Mapenzi L.L., Shimba M.J., Moto E.A., Maghembe R.S., and Mmochi A.J. 2020. Heavy metals bio-accumulation in tilapia and catfish species in Lake Rukwa ecosystem Tanzania. Journal of Geochemical Exploration208, p.106413.
Motamedi F., Moazed H., Jafarzadeh Haghighifard N., Amiri M. 2014. Investigation of kinetics and isotherms of adsorption of Cd (II) ions on nanoclay from aqueous solution. J of Water & Wastewater; 25(3):118-26. (In Persian)
Neto A., Vieira M.G.A., and Silva M.G.C.D. 2012. Cu (II) adsorption on modified bentonitic clays: different isotherm behaviors in static and dynamic systems. Materials Research, 15(1), pp.114-124.
Piri M., and Sepehr E. 2019. Kinetics and thermodynamics of cadmium and lead uptake by diatomite in aqueous medium. Geoderma341, pp.39-45.
Rao M.M., Ramesh A., Rao G.P.C., and Seshaiah K. 2006. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 129(1-3), pp.123-129.
Rasaki S.A., Bingxue Z., Guarecuco R., Thomas T., and Minghui Y. 2019. Geopolymer for use in heavy metals adsorption, and advanced oxidative processes: a critical review. Journal of Cleaner Production213, pp.42-58.
Rhoades J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis: Part 3 Chemical Methods. 5. pp.417-435.
Rizwan M., Ali S., ur Rehman M.Z., Rinklebe J., Tsang D.C., Bashir A., Maqbool A., Tack F.M.G., and Ok, Y.S., 2018. Cadmium phytoremediation potential of Brassica crop species: a review. Science of the Total Environment631, pp.1175-1191.
Samiei Fard R., Landi A., and Hojati S. 2017. Effects of Heating Pretreatments and pH on Removal Efficiency of Cadmium, Cobalt and Zinc from Multi-Ionic Solutions using Sepiolite Mineral, J.Env. Sci. Tech., Vol 19, Special No.4, pp. 93-179. (In Persian)
Sdiri A., Higashi T., Hatta T., Jamoussi F., and Tase N. 2011. Evaluating the adsorptive capacity of montmorillonitic and calcareous clays on the removal of several heavy metals in aqueous systems. Chemical Engineering Journal172(1), pp.37-46.
Sipos P., Kis V.K., Balázs R., Tóth A., Kovács I., and Németh T. 2018. Contribution of individual pure or mixed-phase mineral particles to metal sorption in soils. Geoderma324, pp.1-8.
Sprynskyy M., Buszewski B., Terzyk A.P., and Namieśnik J. 2006. Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. Journal of colloid and Interface Science304(1), pp.21-28.
Sumner M.E., and Miller W.P., 1996. Cation exchange capacity and exchange coefficients. Methods of Soil Analysis: Part 3 Chemical Methods5, pp.1201-1229.
Tanabe K. 1981. Solid acid and base catalysts. Catalysis, Science and Tech Thomas, G.W., 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods, 5, pp.475-490nology2, p.233.
Thomas G.W. 1996. Soil pH and soil acidity. Methods of soil analysis: part 3 chemical methods5, pp.475-490.
Uddin M.K. 2017. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal308, pp.438-462.
Wang J., Jiang Y., Sun J., She J., Yin M., Fang F., Xiao T., Song G., and Liu J. 2020a. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. Ecotoxicology and Environmental Safety196, p.110529.
Wang L., Li X., Tsang D.C., Jin F., and Hou D. 2020b. Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. Journal of Hazardous Materials387, p.122005.