تأثیر بیوچار غنی شده با باکتری‌های حل کننده فسفات بر توزیع شکل‌های فسفر در یک خاک‌ شور و غیر شور حوضه دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 گروه علوم خاک ارومیه

چکیده

به منظور مطالعه تأثیر بیوچار غنی شده و باکتری­های حل کننده­ فسفات بر جزءبندی فسفر خاک، یک آزمایش انکوباسیون فاکتوریل در قالب طرح کاملا تصادفی با 6 تیمار شامل ( باکتری­های حل کننده فسفات (PSB)، بیوچار معمولی سیب-انگور (BC)، مخلوط بیوچار معمولی سیب - انگور و باکتری­های حل کننده فسفات (BC-PSB)، بیوچارغنی شده با خاک فسفات و باکتری­های حل کننده فسفات (BC-RP-PSB)، سوپرفسفات تریپل (TSP) و شاهد(Cont)) و 2 نوع خاک با EC­های مختلف (2 و 15 dS m-1)، در خاک­های حوضه دریاچه ارومیه اجرا گردید. فسفر اولسن، pH و اجزاء فسفر معدنی در زمان­های 7، 30 و 60 روز انکوباسیون اندازه­گیری و از لحاظ آماری آنالیز گردید. بر اساس نتایج، تیمارهای BC-PSB-RP و BC-PSB به­طور متوسط pH نمونه خاک­های S1 و S2 را بترتیب 1/0 و 4/0 واحد کاهش دادند. در اثر اعمال بیوچار غنی شده با باکتری­های حل کننده فسفات (BC-RP-PSB) مقدار فسفر اولسن خاک S1 و S2 به ترتیب از 6 و 7 میلی­گرم در کیلوگرم به 3/35 و 7/41 میلی­گرم در کیلو­گرم خاک (P<0.01) افزایش یافت. تیمارهای میکروبی (PSB، BC-PSB و BC-RP-PSB) توزیع و مقدار اشکال فسفر معدنی خاک­ها را بطور معنی­دار تحت تأثیر قرار دادند. بطوریکه تیمار BC-PSB-RP مقدار دی­کلسیم فسفات خاک S1 را  10 برابر و خاک S2 را 2/5 برابر افزایش داد. در مقابل مقادیر اکتاکلسیم­فسفات، فسفات­های­آلومینیوم و آپاتیت را بطور معنی­دار کاهش دادند. با توجه به نتایج همبستگی، فسفر اولسن با دی کلسیم فسفات، آپاتیت و فسفر پیوندشده با آهن همبستگی معنی­دار داشت احتمالا در عصاره­گیری فسفر اولسن، فـسفر از این اجزاء معدنی آزاد می­شود. نتایج این تحقیق نشان داد استفاده از بیوچار غنی­شده با باکتری­های حل کننده فسفات باعث ابقاء فسفر در طول دوره انکوباسیون در فاز لبایل و قابل جذب برای گیاه گردید و تاثیر بهتری در افزایش فراهمی فسفر در شرایط شور داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Enriched Biochar and Phosphate Solubilizing Bacteria (PSB) on the Distribution of Phosphorus Forms in a Saline and non-Saline Soil of Lake Urmia Basin

نویسندگان [English]

  • Roghaye Mousavi 1
  • MirHassan Rasouli-Sadaghiani 1
  • Ebrahim Sepehr 1
  • mohsen barin 2
1 urmia university
2 Urmia University
چکیده [English]

To study the effect of enriched biochar (EB) by phosphate solubilizing bacteria (PSB) on soil phosphorus (P) fractionation and explain the change in soil phosphorus availability by determining changes in different forms of phosphorus, a factorial incubation experiment in a randomized complete design with six treatments (fertilizer treatments (control (count), biochar (BC), phosphate fertilizer (TSP), Biochar-Rock phosphate (BC-RP), biochar- PSB (BC-PSB) and enriched-biochar with rock phosphate and PSB (BC-RP-PSB) and two soil types with different EC (2 and 15 dS m-1) was studied in saline soils around Lake Urmia. Olsen-P, pH and different forms of inorganic P were determined by sequential extraction method at 7, 30 and 60 days of incubation. The results showed that on average, the BC-PSB-RP and BC-PSB treatments reduced the pH of soils S1and S2 0.1 and 0.4 unit, respectively. BC-PSB-RP treatments reduced Olsen-P of S1 and S2 soils from 6 to35.3 mg.kg-1 and 7 to 41.7 mg.kg-1, respectively. Microbial treatments significantly (p <0.01) altered the distribution and amount of inorganic P forms. BC-PSB-RP reatment increased the amount of Ca2-P fraction in S1 soil by 10 and in S2 soil by 5.2 time. However, the amounts of Ca8-P, Al –P and Ca10-P fractions reduced significantly. Olsen P positively and significantly correlated with Ca2-P, Fe-P, and Ca10-P fractions and suggesting that in the extraction of Olsen-P, phosphorus is released from these mineral fractions. The results showed that the use EB by PSB can provide long-term P supply to plants and had a better effect on increasing the availability of P in saline conditions.

کلیدواژه‌ها [English]

  • phosphorus
  • availability
  • saline soils
  • biochar
Abd‐Alla M.H., 1994. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae, Letters in Applied Microbiology, 18: 294-296.
Abd-Elrahman S. H., 2016. Effect of unconventional phosphorus sources and phosphate solubilizing bacteria on fractions of phosphorus in a calcareous soil cultivated with wheat plants. International Journal of Plant and Soil Science. ‏
Akhtar S. S., Andersen M. N., and Liu F. 2015. Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science201(5): 368-378. ‏
Akhtar, S. S., Andersen, M. N., Naveed, M., Zahir, Z. A., and Liu, F. 2015. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Functional Plant Biology42(8): 770-781. ‏
Ali S., Charles T.C., and Glick B.R. 2014. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry. 80:160-167.
Ashraf M., and Akram N.A. 2009. Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol. Adv. 27: 744-752
Bhise K.K., Bhagwat P.K. and Dandge P.B. 2017. Plant growth-promoting characteristics of salt tolerant Enterobacter cloacae strain KBPD and its efficacy in Amelioration of salt stress in Vigna radiata L. Journal of Plant Growth Regulation. 36: 215–226.
Ch’ng H. Y., Ahmed O. H., and Majid N. M. A. 2014. Improving phosphorus availability in an acid soil using organic amendments produced from agroindustrial wastes. The Scientific World Journal2014. ‏
Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A., and Young C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34(1): 33-41.
Chia C. H., Singh B. P., Joseph S., Graber E. R., and Munroe P. 2014.Characterization of an enriched biochar. Journal of Analytical and Applied Pyrolysis, 108: 26-34.‏         
Chimdi A., Esala M., and Ylivainio K. 2014. Sequential fractionation patterns of soil phosphorus collected from different land use systems of Dire Inchine District, West Shawa Zone, Ethiopia. American-Eurasian Journal of Scientific Research. 9(3): 51-57.‏
Chinnusamy V., Jagendorf A., and Zhu J. 2005. Understanding and improving salt tolerance in plants. Crop Science. 45: 437-448.
Dehghani F., and Saadat S., 2019. Handbook of Use Gypsum to Remediate Sodic Soils, Iran, 30p.
Esawy M., Lamyaa Abd M.I., E R and   Khader A. 2019. Effects of biochar and phosphorus fertilizers on phosphorus fractions, wheat yield and microbial biomass carbon in Vertic Torrifluvents. Communications in Soil Science and Plant Analysis. 5003) 362-372.
Francois L. E., and Maas E.V. 1994. Crop Response and Management on Salt-Affected Soils. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, Inc., New York, pp. 149-181.
Halford. I. C. R. 1979. Evaluation of soil phosphate buffering indices, Australian Journal Soil Research. 17. 495-504.
Hammer E.C., Balogh-Brunstad Z., Jakobsen I., Olsson P.A., and Stipp SLRillig M.C. 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology and Biochemistry 77: 252-260.
Hinsinger P., Brauman A., Devau N., Gerard F., Jourdan C., Laclau J.P., Cadre E., Jaillard B.T., and Plassard C. 2011. Acquisition of phosphorus and other poorly mobile utrients by roots. Where do plant nutrition models fail? Plant Soil. 348(1-2): 29-61.
Jalali M., and Tabar S.S. 2011. Chemical fractionation of phosphorus in calcareous soils of Hamedan, western Iran under different land use. Plant Nutrient and Soil Science. 174:523–531.
Keren R. 2000. Salinity. In: Sumner ME, editor. Handbook of Soil Science. Boca Raton, FL: CRC Press, pG3–G25.
Klute A. 1986. Methods of Soil Analysis, Part 1 Physical and Mineralogical Methods, Arnold Klute ed. Agronomy. 9, (part 1).‏
Lashari M.S., Ye Y., Ji H., Li L., Kibue G.W., Lu H., Zheng J., and Pan G. 2014. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from Central China: A two-year field experiment. Journal of the Science of Food and Agriculture.
Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., and Crowley D. 2011. Biochar effects on soil biota – a review. Soil Biology and Biochemistry 43, 1812–1836.
Liang Y., Nikolic M., Peng Y., Chen W., and Jiang Y. 2005. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biology Biochemical. 37: 1185–1195.
Murphy I. C. R., and Riley J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytia Chimica. Acta. 27: 31-143.
Namli A., Mahmood A., Sevilir B., and Özkır E. 2017. Effect of phosphorus solubilizing bacteria on some soil properties, wheat yield and nutrient contents. Eurasian Journal of Soil Science6(3): 249-258.‏
Nelson  D. W., and  Sommers L. 1982. Total Carbon, Organic Carbon, and Organic Matter 1. Methods of soil analysis. Part 2. Chemical and microbiological Properties, (Methods of soil analysis part 2). 539-579.‏
Olsen S. R., Sommers L. E., and Page A. L. 1982. Methods of Soil Analysis. Part2, 403-430.‏
Opala P. A., Okalebo J. R., and Othieno C. O. 2012. Effects of organic and inorganic materials on soil acidity and phosphorus availability in a soil incubation study. ISRN Agronomy.
Pitman M. G., and Läuchli A. 2002. Global Impact of Salinity and Agricultural Ecosystems. In Salinity: Environment-Plants-Molecules (pp. 3-20). Springer, Dordrecht.‏
Rajkovich, S., Enders, A., Hanley, K., Hyland, C., Zimmerman, A. R., and Lehmann, J. (2012). Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biology and Fertility of Soils, 48, 271–284.
Rasouli-Sadaghiani M. H., Barin M., Ashrafi-Saeidlou S. Shakouri F. 2019. Effects of phosphate-solubilizing microorganisms and mycorrhizal fungi on the growth parameters of corn (Zea mays L.) under salinity condition. Applied Soil Research, 7(3):25-39.
Samadi A., and Gilkes R. J. 1998. Forms of phosphorus in virgin and fertilised calcareous soils of Western Australia. Soil Research36(4): 585-602.‏
Sharpley A.N., Smith S. J., and Bain W. R. 1993. Nitrogen and phosphorus fate from long-term poultry litter applications to Oklahoma soils. Soil Science Society of America Journal. 57(4): 1131-1137.‏
Thomas S.C., Frye S., Gale N., Garmon M., Launchbury R., Machado N., Melamed S., Murray J., Petroff A., and Winsborough C. 2013. Biochar mitigates negative effects of salt additions on two herbaceous plant species. Journal of Environmental Management. 129: 62–68.
Uygur V., and Karabatak I. 2009.The effect of organic amendments on mineral phosphate fractions in calcareous soils. Journal of Plant Nutrition and Soil Science. 172(3): 336-345.‏
Zhai L. Z., CaiJi  J.,  Liu H., Wang  T. Ren,  Gai  X.  and Liu H. 2015. Short-term effects of maize residue biochar on phosphorus availability in two soils with different phosphorus sorption capacities. Biology and Fertility of Soils. 51: 113-122.‏