پیش‌بینی توزیع مکانی ماده آلی و نیتروژن خاک در اراضی تحت آبیاری (مطالعه موردی: دشت آبسرد – دماوند استان تهران)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه علوم خاک، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.

2 استاد گروه علوم خاک، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران.

3 استادیار گروه علوم خاک، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

4 دانشیاردانشیار گروه علوم خاک، دانشکده علوم کشاورزی و صنایع غذایی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران.

5 استادیار گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

چکیده

پژوهش حاضر با هدف بررسی منشأ و پتانسیل خطر زیست محیطی فلزات سنگین (شامل آرسنیک (As)، کادمیم (Cd)، سرب (Pb)، نیکل (Ni)، روی (Zn) و مس (Cu)) خاک اراضی با کاربری‌های مختلف در غرب اراک، استان مرکزی صورت گرفت. تعداد 235 نمونه خاک سطحی از عمق صفر تا 5 سانتی‌متری جمع‌آوری شد که سهم کاربری‌های کشاورزی، مرتع و صنعتی به ترتیب 160، 46 و 29 نمونه بود. تغییرات غلظت As، Pb، Zn، Ni، Cd و Cu در خاک‌ها به ترتیب 2/357- 7/55، 256- 8/6، 85-2/13، 17-7/26، 65/3- 1/0 و 1/34- 1/5 میلی‌گرم بر کیلوگرم خاک بود. مقایسه میانگین غلظت فلزات در کاربری‌های مختلف نشان از تأثیر یکسان کاربری اراضی بر تجمع و غلظت As، Pb، Zn و Cu دارد، ولی در مورد Ni و Cd بیان کننده تأثیر متفاوت کاربری اراضی بر تجمع این فلزات است. هنگامی که متوسط مقدار پوسته زمین (Crust) به عنوان زمینه مرجع مورد استفاده قرار گرفت مقادیر Cf آرسنیک در همه کاربری‌‌ها بالاتر از سایر فلزات به دست آمد که نشان دهنده آلودگی زیاد خاک‌های منطقه است. شاخص بار آلودگی (PLI)  نیز در کاربری‌های اراضی به صورت  کشاورزی (39/2) < مرتع (4/2) < صنعتی (3) بود که بیان کننده آلودگی و روند تدریجی تخریب خاک در اثر آلودگی فلزات سنگین است. میانگین  PER بر اساس GB مرجع و محلی به ترتیب سطح آلودگی خیلی زباد و کم را در همه کاربری‌ها نشان دادند. تجزیه به مؤلفه‌های اصلی (PCA) نشان داد Pb و Zn دارای منابع انسانی مشترک در ارتباط با معدن کاری و فعالیت‌‌های صنعتی هستند؛ در حالیکه Cu و Ni احتمالاً ارتباط با زمین‌ شناسی منطقه دارند. Cd نیز اساسأ به فعالیت‌های کشاورزی و صنعتی مرتبط است و منشأ As را می‌توان به عوامل طبیعی، گازهای صنعتی، معدن کاری، علف‌کش‌ها و استفاده از کودهای مرغی و غبارات اتمسفری نسبت داد.

کلیدواژه‌ها


عنوان مقاله [English]

Prediction of Spatial Distribution of Soil Organic Content and Nitrogen in Irrigated Lands (Case Study: Absard Plain- Damavand, Tehran Province)

نویسندگان [English]

  • Seyedeh Ensieh Faramarzi 1
  • Ebrahim Pazira 2
  • Mohammad Hassan Masihabadi 3
  • Ali Mohammadi torkashvand 4
  • Baharak Motamedvaziri 5
1 Department of Soil Science, Faculty of Agriculture and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Department of Soil Science, Faculty of Agriculture and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 Assistant Professor, Department of Soil Science, Faculty of Agriculture and Food Industry, Islamic Azad University Science and Research Branch Tehran
4 Department of Soil Science, Faculty of Agriculture and Food Industry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
5 Department of Forest, Range and Watershed Management, Faculty of Natural Resources and Environmental, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

The aim of this study was to investigate the origin and potential ecological risk of heavy metals (arsenic (As), cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn) and Cu (copper) in different land uses in West of Arak, Markazi Province. A total of 235 Surface soil samples were taken from the depth of 0-5 cm including 160, 46 and 29 samples from agricultural, rangeland and industrial land uses, respectively. The ranges of As, Pb, Zn, Ni, Cd and Cu in studied soils were 55.7–357.2, 6.8–256, 13.2–858, 26.7–172, 0.1–3.65 and 5.1–34.1 mg/kg, respectively. Comparison of the mean concentration of heavy metals in different land uses indicative of the same influence of land use to metal accumulations of As, Pb, Zn and Cu, but in the case of Ni and Cd showed that a differential influence of land use the distribution of these metals in the soil. When the average amount of crust was used as a reference background, the Cf values of As in all land uses were higher than other metals, indicating high level of pollution of soils in this region. The index of PLI in land uses comprised, industrial (3) > rangeland (2.4) > agriculture (2.39), indicating the pollution and gradual destruction of soil. The mean PER based on reference and local GB showed very high and low pollution level in all land uses, respectively. Principal component analysis (PCA) showed that Pb and Zn originated from common anthropogenic sources related to industrialization and mining, whereas Cu and Ni are probably in associated with geological sources. Cd was mainly derived from the input of agricultural and industrial activities, and As should be attributed to natural resources, emissions from local industries, mining, herbicides and the use of poultry manure and atmospheric dust.

کلیدواژه‌ها [English]

  • Landsat 8
  • Soil Organic Matter
  • Standardized Spectral Reflection Index
  • Total Nitrogen
Abouian Jahromi M., Khodadadi A., Jamshidi Zanjani A., and Shafeezadeh Moghadam H. 2017. Qualitative mapping of surface soil contamination around Irankou Lead_Zinc mine. Iranian Journal of Mining Engineering, 12(37): 65-79. (In Persian).
Acosta J.A., Faz A., Martínez-Martínez S., and Arocena J.M. 2011. Enrichment of metals in soils subjected to different land uses in a typical Mediterranean environment (Murcia City, southeast Spain). Applied Geochemistry, 26(3): 405-414.
Afshari A., Khademi H., and Ayoubi S. 2016. The fractionation of some heavy metals in calcareous soils affected by land uses of central area of Zanjan Provine (Northwest of Iran). Journal of Water and Soil, 30(5): 1489-1501.)In Persian)
Alloway B. 2013. Heavy Metals in Soils. Springer, Dordrecht. 613p.
Bagheri Y.R, Meskini-Vishkaee F., Mohammad Esmaeil Z., Saadat S., and Rezaei H. 2018. Evaluating and mapping the environmental risk of soil heavy metals using by contamination indexes in the Tehran south farms. Journal of natural environment, 70(4): 857-868. )In Persian)
Burt R. 2004. Soil survey laboratory methods manual. Soil survey investigations report no. 42, version 4.0. Natural Resources Conservation Service, US Department of Agriculture, Washington, DC. 42, Version 4.0. United States Department of Agriculture, NaturalResources Conservation Service, National Soil Survey Center, Lincoln, NE.
Chen T.B., Zheng Y.M., Lei M., Huang Z.C., Wu H.T., Chen H., and Tian Q.Z. 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60: 542-551.
Cheng X., Danek T., Drozdova J., Huang Q., Qi W., Zou L., Yang S., Zhao X., and Xiang Y. 2018. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China. Environmental monitoring and assessment, 190(4): 1-16.
Defarge N., De Vendômois J.S., and Séralini G.E. 2018. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology reports, 5: 156-163.
Esmaeili A., Moore F., Keshavarzi B., Jaafarzadeh N., and Kermani M. 2014. A geochemical survey of heavy metals in agricultural and background soils of the Isfahan industrial zone, Iran. Catena, 121: 88-98.
Gabarrón M., Zornoza R., Martínez-Martínez S., Muñoz V.A., Faz Á., and Acosta J.A. 2019. Effect of land use and soil properties in the feasibility of two sequential extraction procedures for metals fractionation. Chemosphere, 218: 266-272.
Gąsiorek M., Kowalska J., Mazurek R., and Pająk M. 2017. Comprehensive assessment of heavy metal pollution in topsoil of historical urban park on an example of the Planty Park in Krakow (Poland). Chemosphere, 179: 148-158.
Gee G.W., and. Bauder J.W. 1986. Particle size analysis. Methods of soil analysis. Part, 1, pp.383-409.
Ghadimi F., Ghomi M., and Mohammadi Valikhandi E. 2019. Evaluation of Soil Contamination to Heavy Metals around the Shazand Power Plants Using Statistical and Geo Statistical Analysis. Journal of Environmental Science and Technology, 21(5): 139-153. (In Persian)
Ghorbani H., Hafezi Moghadas N., and Kashi H. 2015. Effects of land use on the concentrations of some heavy metals in soils of Golestan Province, Iran. Journal of Agricultural Science and Technology, 17: 1025-1040.
Gupta U.C., and Gupta S.C. 1998. Trace element toxicity relationships to crop production and livestock and human health: implications for management. Communications in Soil Science and Plant Analysis, 29(11-14): 1491-1522.
Hakanson L.1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water research, 14(8): 975-1001.
Horváth A., Szűcs P., and Bidló A. 2015. Soil condition and pollution in urban soils: evaluation of the soil quality in a Hungarian town. Journal of soils and sediments, 15(8): 1825-1835.
Hu J., Lin B., Yuan M., Lao Z., Wu K., Zeng Y., Liang Z., Li H., Li Y., Zhu D., and Liu J. 2019. Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area, China. Environmental geochemistry and health, 41(2): 967-980.
Islam S., Ahmed K., and Masunaga S. 2015. Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 512: 94-102.
Kabata-Pendias A. 2010. Trace elements in soils and plants. CRC press, Boca Raton, USA. 520p.
Ke X., Gui S., Huang H., Zhang H., Wang C., and Guo W. 2017. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175: 473-481.
Kowalska J.B., Mazurek R., Gąsiorek M., and Zaleski T. 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental geochemistry and health, 40(6): 2395-2420.
Kowalska J.B., Mazurek R., Gąsiorek  M., and Zaleski T. 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6): 2395-2420.
Kumwimba M.N., Zhu B., Wang T., and Muyembe D.K. 2016. Distribution and risk assessment of metals and arsenic contamination in man-made ditch sediments with different land use types. Environmental Science and Pollution Research, 23(24): 24808-24823.
Liu K., Li C., Tang S., Shang G., Yu F., and Li Y. 2020. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi, China. Chemosphere, 251: 1-12.
Lu Q., Wang S., Bai X., Liu F., Li C., Deng Y., and Tian S. 2020. Quantitative assessment of human health risks under different land uses based on soil heavy metal pollution sources. Human and Ecological Risk Assessment: An International Journal, 27(2): 327-343.
Luo L., Ma Y., Zhang S., Wei D., and Zhu Y.G. 2009. An inventory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90(8): 2524-2530.
Mazurek R., Kowalska J.B., Gąsiorek M., Zadrożny P., and Wieczorek J. 2019. Pollution indices as comprehensive tools for evaluation of the accumulation and provenance of potentially toxic elements in soils in Ojców National Park. Journal of Geochemical Exploration, 201: 13-30.
Mehr M.R., Keshavarzi B., Moore F., Sharifi R., Lahijanzadeh A., and Kermani M. 2017. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. Journal of African Earth Sciences, 132: 16-26.
Nelson D.W., and Sommers L. 1983. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9: 539-579.
Ogundele L.T., Ayeku P.O., Adebayo A.S., Olufemi A.P., and Adejoro I.A. 2020. Pollution Indices and Potential Ecological Risks of Heavy Metals in the Soil: A Case Study of Municipal Wastes Site in Ondo State, Southwestern, Nigeria. Polytechnica, 3: 78-86.
Özkul C. 2016. Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environmental monitoring and assessment, 188(5): 1-12.
Putri M.S.A., Lou C.H., Syai’in M., Ou S.H., and Wang Y.C. 2018. Long-term river water quality trends and pollution source apportionment in Taiwan. Water, 10(10): 1-17.
Rai P.K., Lee S.S., Zhang M., Tsang Y.F., and Kim K.H. 2019. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environment international, 125: 365-385.
Rashed M.N. 2010. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. Journal of hazardous materials, 178: 739–746.
Reimann C., and Garrett R.G. 2005. Geochemical background-concept and reality. Science of the Total Environment, 350: 12–27.
Rodríguez-Eugenio N., McLaughlin M., and Pennock D. 2018. Soil pollution: a hidden reality. FAO, 144p.
Rojas R.V., Achouri M., Maroulis J., and Caon L. 2016. Healthy soils: a prerequisite for sustainable food security. Environmental Earth Sciences, 75(3): 1-10.
Shan Y., Tysklind M., Hao F., Ouyang W., Chen S., and Lin C. 2013. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soils and Sediments, 13 (4): 720–729.
Sohrabizadeh Z., Sodaiezadeh H., Hakimizadeh M.A., Taghizadeh Mehrjardi R., and Ghanei Bafaqi M.J. 2020. Evaluation of heavy metal contamination in desert soils around Pb-Zinc Mine of Kushk, Bafq using pollution indicators and principal component analysis. Journal of Geography and Environmental Planning, 31(77): 16-34.)In Persian)
Soil Survey Staff. 2004. Soil Survey Laboratory Methods Manual. Version No. 4.0. USDA-nrcs. Soil Survey Investigations Report No. 42. U.S. Govt. Print. Office, Washington, 407p.
Solgi E., Beigmohammadi F., and Zamanian A. 2020. Application of pollution indices to investigate of heavy metals sequestration in soil (Case Study of Nahavand Cement Factory). Applied Soil Research. 8(3):188-201. (In Persian)
Taati A., Salehi M.H., Mohammadi J., and Mohajer R. 2020. Assessment of pollution level, non-carcinogenic and carcinogenic risk of heavy metals on human health in surface soils of Arak industrial areas, Iran. Iranian Journal of Health and Environment, 13(2): 335-348. (In Persian).
Taati A., Salehi M.H., Mohammadi J., Mohajer R., and Díez S. 2021. Human health risk assessment of arsenic and trace metals in atmospheric dust of Arak industrial area, Iran. Environmental Science and Pollution Research, 28: 36837-36849.
Taati A., Salehi M.H., Mohammadi J., Mohajer R., and Díez S. 2020. Pollution assessment and spatial distribution of trace elements in soils of Arak industrial area, Iran: Implications for human health. Environmental Research, 187: 1-9.
Taylor S.R. 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta. 28:1273–1285.
Tomlinson D.L., Wilson J.G., Harris C.R., and Jeffrey D.W. 1980. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer meeresuntersuchungen, 33(1-4): 566-575.
Touzandejani F., Soffianian A., Mirghaffari N., and Soleimani M. 2017. Assessment of Arsenic Contamination Probability of Groundwater in HamedanBahar Basin Using Geostatistical Methods. Journal of Water and Soil, 30(3): 874-885. (In Persian)
Wang L., Cui X., Cheng H., Chen F., Wang J., Zhao X., Lin C., and Pu X. 2015. A review of soil cadmium contamination in China including a health risk assessment. Environmental Science and Pollution Research, 22(21): 16441-16452.
Weerasundara L., Magana-Arachchi D.N., Ziyath A.M., Goonetilleke A., and Vithanage, M. 2018. Health risk assessment of heavy metals in atmospheric deposition in a congested city environment in a developing country: Kandy City, Sri Lanka. Journal of environmental management, 220: 198-206.
Zhao K., Zhang L., Dong J., Wu J., Ye Z., Zhao W., Ding L., and Fu W. 2020. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China. Geoderma, 360: 1-11.
Zhu Y., Zhao X., Lian J., and Chen M. 2016. Variation of Zn content in soils under different land-use types in the Hetao oasis, Inner Mongolia of China. Journal of Arid Land 8(6): 861-870.
Zhuang Z., Mu H.Y., Fu P.N., Wan Y.N., Yu Y., Wang Q., and Li H.F. 2020. Accumulation of potentially toxic elements in agricultural soil and scenario analysis of cadmium inputs by fertilization: A case study in Quzhou county. Journal of environmental management, 269: 1-9.