تاثیر ذرات میکروپلاستیک پلی اتیلنی بر غلظت برخی عناصر غذایی در یک خاک آهکی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

چکیده

میکروپلاستیک‌ها به‌عنوان یکی از انواع آلاینده‌های نوظهور گزارش شده‌ است و اطلاعات کمی درباره تأثیر و رفتار آنها بر خصوصیات خاک وجود داد. هدف این تحقیق بررسی تغییرات غلظت قابل تبادل (عصاره‌گیری شده با استات آمونیوم 1 مولار) و محلول در آب (نسبت 1 به 5/2 خاک به آب) عناصر سدیم، پتاسیم، کلسیم و منیزیم تحت تأثیر ذرات میکروپلاستیک پلی‌اتیلن سبک در خاک بود. آزمایش به‌صورت فاکتوریل بر پایه طرح کاملاً تصادفی در سه تکرار اجرا شد. عوامل آزمایش شامل مقدار ذرات میکروپلاستیک (صفر، 1، 2 و 4 درصد وزنی-وزنی) و دوره انکوباسیون (3، 17، 31، 45، 90 و 180 روز) بود. نتایج نشان داد که ذرات میکروپلاستیک غلظت قابل تبادل و محلول در آب عناصر را تحت تأثیر قرار داد. ذرات میکروپلاستیک غلظت قابل تبادل سدیم، پتاسیم و کلسیم را کاهش داد. بیشترین کاهش مربوط به سطح 4 درصد میکروپلاستیک بود. به‌طور خلاصه، غلظت سدیم، پتاسیم و کلسیم قابل تبادل در مقایسه با خاک شاهد به‌ترتیب 2/7، 7/5 و 6/2 درصد کاهش یافت. از سوی دیگر، تحت تأثیر ذرات میکروپلاستیک (سطح 4 درصد) غلظت پتاسیم و کلسیم محلول در آب به‌ترتیب 97/6 و 4/8 درصد در مقایسه با خاک شاهد کاهش یافت. ذرات میکروپلاستیک سدیم محلول در آب را در دوره‌های اول (3روز) تا چهارم (45 روز) انکوباسیون کاهش داد. همچنین، ذرات میکروپلاستیک غلظت منیزیم قابل تبادل و محلول در آب را نیز کاهش داد، اما معنی‌دار نبود. به‌طور خلاصه حضور ذرات میکروپلاستیک در خاک به‌ویژه با مقادیر بالاتر (مانند 4 درصد)، می‌تواند قابلیت دسترسی عناصر کاتیونی مانند سدیم، پتاسیم، کلسیم و منیزیم را تحت تأثیر قرار دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Polyethylene Microplastic Particles on Some of Nutrients Concentration in a Calcareous Soil

نویسندگان [English]

  • Mehdi Tafvizi
  • Mohammad Babaakbari
  • Mohammad Amir Delavar
Department of soil Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
چکیده [English]

Microplastics (MPs) have been reported as emerging contaminants. There was little information about their effect and behavior on soil properties. This study aimed to investigate the changes in exchangeable concentrations (extracted with 1 M ammonium acetate) and water-soluble (ratio of 1 to 2.5 soil to water) of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) elements under the presence of Low-Density Polyethylene MPs particles in the soil. The experiment was performed as a factorial experiment based on a completely randomized design with three replications. Experimental factors included the amount of MPs particles (zero, 1, 2, and 4% w/w) and incubation time (3, 17, 31, 45, 90, and 180 days). The results showed that MPs particles affected exchangeable and water-soluble elements. MPs particles reduced the exchangeable amounts of Na, K, and Ca. The largest decrease was related to the level of 4% MPs. Briefly. In the level of 4%, the amount of exchangeable Na, K, and Ca decreased by 7.2, 5.7 and 2.6 %, respectively, in comparison with control soil (without MPs). On the other hand, water-soluble K and Ca under the influence of MPs particles (4% MPs level) decreased by 6.97 and 8.4 % respectively, as compared with control. MPs particles reduced water-soluble Na in the first (3 days) to fourth (45 days) incubation periods. Also, MPs particles reduced the amount of exchangeable and water-soluble Mg, but it was not significant. In summary, the presence of MPs particles in the soil, especially in higher amounts (ex: 4%), can affect the availability of cationic elements such as Na, K, Ca, and Mg.

کلیدواژه‌ها [English]

  • Calcareous soil
  • Emerging pollutants
  • nutrients
  • Microplastics
  • Soil contamination
Andrade M. C., Winemiller K. O., Barbosa P. S., Fortunati A., Chelazzi D., Cincinelli A., and Giarrizzo T. 2019. First account of plastic pollution impacting freshwater fishes in the Amazon: Ingestion of plastic debris by piranhas and other serrasalmids with diverse feeding habits. Environmental Pollution, 244, 766–773.
Ashton K., Holmes L., and Turner A. 2010. Association of metals with plastic production pellets in the marine environment. Marine Pollution Bulletin, 60(11), 2050–2055.
Book U. Y. 2014. Emerging issues update air pollution: World’s worst environmental health risk. United Nations Environment Programme.
Bouyoucos G. J. 1962. Hydrometer method improved for making particle size analyses of soils 1. Agronomy Journal, 54(5), 464–465.
Bradney L., Wijesekara H., Palansooriya K. N., Obadamudalige N., Bolan N. S., Ok Y. S., Rinklebe J., Kim K.-H., and Kirkham M. B. 2019. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International, 131, 104937.
Chen S., Tan Z., Qi Y., and Ouyang C. 2019. Sorption of tri-n-butyl phosphate and tris (2-chloroethyl) phosphate on polyethylene and polyvinyl chloride microplastics in seawater. Marine Pollution Bulletin, 149, 110490.
Cherian C., and Arnepalli D. N. 2015. A Critical Appraisal of the Role of Clay Mineralogy in Lime Stabilization. International Journal of Geosynthetics and Ground Engineering, 1(1), 1–20.
Cole J. C., Smith M. W., Penn C. J., Cheary B. S., and Conaghan K. J. 2016. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211, 420–430.
de Souza Machado A. A., Kloas W., Zarfl C., Hempel S., and Rillig M. C. 2018. Microplastics as an emerging threat to terrestrial ecosystems. Global Change Biology, 24(4), 1405–1416.
de Souza Machado A. A., Lau C. W., Kloas W., Bergmann J., Bachelier J. B., Faltin E., Becker R., Görlich A. S., and Rillig M. C. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science and Technology, 53(10), 6044–6052.
Ekebafe L., Ogbeifun D., Biokemistri F. O.-, and 2011, undefined. 2011. Polymer applications in agriculture. Ajol.Info, 23(2), 81–89. https://www.ajol.info/index.php/biokem/article/view/77680.
Europe P. 2016. Plastics—The Facts 2016. An Analysis of European Latest Plastics Production, Demand and Waste Data.
Geyer R., Jambeck J. R., and Law K. L. 2017. Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782.
Guo J., Huang X., Xiang L., Wang Y., Li Y., Li H., and Cai Q. 2020. Source, migration and toxicology of microplastics in soil. Environment International, 137(July 2019), 105263.
Havlin J. L. 2020. Soil: Fertility and Nutrient Management. Landscape and Land Capacity, 251–265.
Holmes L. A., Turner A., and Thompson R. C. 2012. Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160(1) 42–48.
Holmes L. A., Turner A., and Thompson R. C. 2014. Interactions between trace metals and plastic production pellets under estuarine conditions. Marine Chemistry, 167, 25–32.
Jalali M., Arian T. M., and Ranjbar F. 2020. Selectivity coefficients of K, Na, Ca, and Mg in binary exchange systems in some calcareous soils. Environmental Monitoring and Assessment, 192(2).
Lambert S., and Wagner M. 2018. Microplastics are contaminants of emerging concern in freshwater environments: An overview. Handbook of Environmental Chemistry, 58, 1–23.
Liu E. K., He W. Q., and Yan C. R. 2014. ‘White revolution’to ‘white pollution’—agricultural plastic film mulch in China. Environmental Research Letters, 9(9), 91001.
Liu S., Shi J., Wang J., Dai Y., Li H., Li J., Liu X., Chen X., Wang Z., and Zhang P. 2021. Interactions between Microplastics and Heavy Metals in Aquatic Environments: A Review. Frontiers in Microbiology, 12(April), 1–14.
Loeppert R. H., and Suarez D. L. 1996. Carbonate and gypsum. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 437–474.
Mao R., Lang M., Yu X., Wu R., Yang X., and Guo X. 2020. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393, 122515.
Nassr, M., Krupa, I., Ouederni, M., Krishnamoorthy, S. K., & Popelka, A. (2023). An Adhesion Improvement of Low-Density Polyethylene to Aluminum through Modification with Functionalized Polymers. Polymers15(4), 916.
Rhoades J. D., and Miyamoto S. 1990. Testing soils for salinity and sodicity. Soil Testing and Plant Analysis, 3, 299–336.
Richards L. A. 1954. Diagnosis and Improvement of. Saline and Alkali Soils. Handbook, 60.
Rillig M. C. 2012. Microplastic in terrestrial ecosystems and the soil? ACS Publications.
Rillig M. C., Ingraffia R., and Machado A. A. D. S. 2017. Microplastic Incorporation into Soil in Agroecosystems. 8(October), 8–11.
Rochman C. M., Browne M. A., Halpern B. S., Hentschel B. T., Hoh E., Karapanagioti H. K., Rios-Mendoza L. M., Takada H., Teh S., and Thompson R. C. 2013. Classify plastic waste as hazardous. Nature, 494(7436), 169–171.
Rochman C. M., Hentschel B. T., and Teh S. J. 2014. Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLOS One, 9(1), e85433.
Ruimin Q., Jones D. L., Zhen L., Qin L., and Changrong Y. 2019. Behavior of microplastics and plastic film residues in the soil environment: A critical. Science of the Total Environment, 134722.
Thomas G. W. 1996. Soil pH and soil acidity. Methods of Soil Analysis: Part 3 Chemical Methods, 5, 475–490.
Turner A., and Holmes L. A. 2015. Adsorption of trace metals by microplastic pellets in fresh water. Environmental Chemistry, 12(5), 600–610.
Wan Y., Wu C., Xue Q., and Hui X. 2019. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of the Total Environment, 654, 576–582.
Wang J., Peng J., Tan Z., Gao Y., Zhan Z., Chen Q., and Cai L. 2017. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere, 171, 248–258.
Wijesekara H., Bolan N. S., Bradney L., Obadamudalige N., Seshadri B., Kunhikrishnan A., Dharmarajan R., Ok Y. S., Rinklebe J., and Kirkham M. B. 2018. Trace element dynamics of biosolids-derived microbeads. Chemosphere, 199, 331–339.
Xu B., Liu F., Cryder Z., Huang D., Lu Z., He Y., Wang H., Lu Z., Brookes P. C., Tang C., Gan J., and Xu J. 2020. Microplastics in the soil environment: Occurrence, risks, interactions and fate–A review. Critical Reviews in Environmental Science and Technology, 50(21), 2175–2222.
Zhang G. S., Zhang F. X., and Li X. T. 2019. Effects of polyester microfibers on soil physical properties: Perception from a field and a pot experiment. Science of the Total Environment, 670, 1–7.
Zhou J., Wen Y., Marshall M. R., Zhao J., Gui H., Yang Y., Zeng Z., Jones D. L., and Zang H. 2021. Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787, 147444.
Zou J., Liu X., Zhang D., and Yuan X. 2020. Adsorption of three bivalent metals by four chemical distinct microplastics. Chemosphere, 248, 126064.