تاثیر نانو حامل جدید کربنی بعنوان کود کندرها بر جذب روی در گیاه گندم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگر فوق دکتری، گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد

2 عضوهیات علمی

3 دانشگاه فردوسی مشهدو دانشکده کشاورزی، بخش آموزش

4 دانشجوی دکتری شیمی خاک و تغذیه گیاهی، دانشکده کشاورزی، دانشگاه فردوسی مشهد

10.30466/asr.2023.121392

چکیده

در سال­های اخیرا نانومواد کربنی به دلیل زیست سازگاری، ارزان بودن و همچنین تأثیرات مهمی که بر رشد گیاهان دارند مورد توجه قرار گرفته­اند. در این پژوهش یک کود جدید بر پایه نانو مواد کربنی سنتز و اثرات آن بر رشد و  بهبود غلظت روی در اندام هوایی گیاه گندم رقم سیروان در محیط آبکشت بررسی گردید. برای این منظور، ابتدا این نانومواد کربنی کایرال دوپ شده با یون روی (Zn-NCDs) توسط یک روش هیدروترمال تک مرحله­ای آسان و با استفاده از مواد اولیه اسید سیتریک، اوره و کلرید روی تولید و سپس ویژگی­های آن با روش­های دستگاهی از قبیل FT-IR، CHN، EDS، DLS، PL، UV-Vis، FESEM، TEM، ICP-OES و پتانسیل زتا تعیین شد. همچنین اثرات Zn-NCDs بر رشد و بهبود غلظت روی در گیاه گندم رقم سیروان در محیط آبکشت در قالب طرح کاملا تصادفی با سه تکرار و سه ­­غلظت 2، 4 و 8 ­میلی­گرم بر لیتر در مقایسه با دو کود تجاری ZnSO4 وZn-EDTA با غلظت 2 میلی­گرم بر لیتر ارزیابی گردید. در نهایت، رفتار رهاسازی روی از Zn-NCDs در قالب طرح کاملا تصادفی با آرایش فاکتوریل با سه تکرار در شرایط انکوباسیون بررسی شد. آنالیزهای دستگاهی نشان داد که نانوحامل Zn-NCDs دارای بار سطحی  mV45/20-، پراکندگی یکنواخت، بدون تجمع ظاهری و میانگین اندازه ذرات کمتر از 5 نانومتر است. همچنین، حضور عناصر کربن، نیتروژن، اکسیژن و روی در ساختار Zn-NCDs  تایید گردید. نتایج روش آبکشت نشان داد که Zn-NCDs تاثیر مشابهی با دو کود تجاری ZnSO4 و Zn-EDTA در تامین روی در اندام هوایی گیاه گندم داشته است. همچنین، غلظت نیتروژن و پروتئین را در اندام هوایی نسبت ZnSO4 به طور معنی­داری افزایش داد. نتایج انکوباسیون خاک نشان داد که آزادسازی روی از نانوحامل کربنی NCDs به طور آهسته و به مدت 30 روز تا غلظت­ 35/1 میلی­گرم بر کیلوگرم ادامه داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of a New Carbon Nanocarrier as a Slow Release Fertilizer on the Absorption of Zinc in Wheat Plant

نویسندگان [English]

  • Mina Alikhani Moghadam 1
  • Amir Lakzian 2
  • atena mirbolook 3
  • jalal sadeghi 4
1 Postdoctoral researcher, Department of Soil Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad
2 Soil science dept, Ferdowsi university of Mashhad, Mashhad, Iran
3 Faculty of Agriculture, Ferdowsi University of Mashhad
4 PhD in Soil Chemistry and Plant Nutrition, Faculty of Agriculture, Ferdowsi University of Mashhad
چکیده [English]

In recent years, carbon-based nanomaterials have been widely applied in agriculture due to their higher biocompatibility, cheapness, and important effects on the growth and production of plants. In this research work, a new fertilizer based on carbon nanomaterials (Zn-NCDs) was synthesized using citric acid, urea, and zinc chloride as the precursors via a one-pot simple hydrothermal method and characterized by FT-IR, CHN, EDS, DLS, PL, UV-Vis, FESEM, TEM, ICP-OES, and zeta potential. Then, the effects of the Zn-NCDs as a zinc source were evaluated on the growth and the improvement of zinc uptake in the shoot of wheat (Triticum aestivum, Sirvan) under a hydroponic condition using a completely randomized design, with three replications and three concentrations of 2, 4, and 8 mg L-1 compared to ZnSO4, and Zn-EDTA (with a concentration of 2 mg L-1). Instrumental analysis showed that Zn-NCDs nanocarriers have uniform dispersion, no apparent aggregation, and an average particle size of less than 5 nm. Also, the presence of carbon, nitrogen, oxygen, and zinc in the structure of Zn-NCDs was confirmed. The hydroponic culture revealed that Zn-NCDs was as effective as two commercial fertilizers, ZnSO4 and Zn-EDTA, in providing zinc in the shoot of wheat plants. Also, Zn-NCDs significantly increased the percentage of nitrogen and protein in shoot compared to ZnSO4. The results of the soil incubation demonstrated that the zinc release from NCDs nanocarrier continued for 30 days.

کلیدواژه‌ها [English]

  • Carbon nanomaterials
  • Zinc deficiency
  • Hydroponic
  • Slow release fertilizer
Abdollahi A., Norouzi masir M., Taghavi M., and Moezzi A. 2019. Effect of zinc oxide nanoparticles on zinc chemical forms in soil solution phase and its correlation with concentration and uptake of zinc in wheat. Applied Soil Research, 7(4):35-46.
Aguila-Almanza E., Salgado-Delgado R., Vargas-Galarza Z., García-Hernández E., and Hernández-Cocoletzi H. 2019. Enzymatic depolimerization of chitosan for the preparation of functional membranes. Journal of Chemistry, 2019:5416297.
Atchudan R., Edison T.N., Mani S., Perumal S., Vinodh R., Thirunavukkarasu S., and Lee Y.R. 2020. Facile synthesis of a novel nitrogen-doped carbon dot adorned zinc oxide composite for photodegradation of methylene blue. Dalton Transactions, 49 (48):17725-17736.
Black C. 1965. Methods of soil analysis Part, American Society of Agronomy, Wisconsin, USA. Density, water contents and microbial population of soil. Journal of Indian Society of soil science, 40:553-555.
Bremner J. 1982. Total nitrogen. Methods of soil analysis Am Soc Agron Mongrn 10, 2:594-624.
Chapman H., and Pratt P. 1961. Methods of Analysis for Soils, Plants and Waters. Priced Publication 4034. Division of Agriculture Sciences. University of California, Berkeley, 5-350.
Cheng J., Wang C-F., Zhang Y., Yang S., and Chen S. 2016. Zinc ion-doped carbon dots with strong yellow photoluminescence. RSC advances, 6 (43):37189-37194.
Dapkekar A., Deshpande P., Oak M.D., Paknikar K.M., and Rajwade J.M. 2018. Zinc use efficiency is enhanced in wheat through nanofertilization. Scientific reports, 8 (1):1-7.
Ghasemi S., Khoshgoftarmanesh A.H., Afyuni M., Hadadzadeh H., and Schulin R. 2013. Zinc–amino acid complexes are more stable than free amino acids in saline and washed soils. Soil Biology and Biochemistry, 63:73-79.
Han X., Chen S., and Hu X .2009. Controlled-release fertilizer encapsulated by starch/polyvinyl alcohol coating. Desalination, 240 (1-3):21-26.
Hoagland D.R., and Arnon D.I. 1950. The water-culture method for growing plants without soil. Circular California agricultural experiment station, 347 (2nd edit).
Jia X., Li J., and Wang E. 2012. One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4 (18):5572-5575.
Karkanis P., Au K., and Schaalje G. 1991. Comparison of four measurement schedules for determination of soil particle-size distribution by the hydrometer method. Canadian Agricultural Engineering, 33 (2):211-216.
Koo Y., Wang J., Zhang Q., Zhu H., Chehab E.W., Colvin V.L., Alvarez P.J.J., and Braam J. 2015. Fluorescence Reports Intact Quantum Dot Uptake into Roots and Translocation to Leaves of Arabidopsis thaliana and Subsequent Ingestion by Insect Herbivores. Environmental Science & Technology, 49 (1):626-632.
Kulikov S.N., Lisovskaya S.A., Zelenikhin P.V., Bezrodnykh E.A., Shakirova D.R., Blagodatskikh I.V., and Tikhonov V.E. 2014. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: Molecular weight–activity relationship. European Journal of Medicinal Chemistry, 74:169-178.
Li H., Huang J., Lu F., Liu Y., Song Y., Sun Y., Zhong J., Huang H., Wang Y., and Li S. 2018. Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Applied Bio Materials, 1 (3):663-672.
Li W., Wang S., Li Y., Ma C., Huang Z., Wang C., Li J., Chen Z., and Liu S. 2017. One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydrate polymers, 175:7-17.
Li W., Zheng Y., Zhang H., Liu Z., Su W., Chen S., Liu Y., Zhuang J., and Lei B. 2016. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants. ACS applied materials & interfaces, 8 (31):19939-19945.
Lin D., and Xing B. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental pollution, 150 (2):243-250.
Liu D., Zhou J., Wang J., Tian R., Li X., Nie E., Piao X., and Sun Z. 2018. Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode. Chemical Engineering Journal, 344:332-341.
Mansuriya B.D., and Altintas Z. 2021. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care—An Updated Review (2018–2021). Nanomaterials, 11 (10):2525.
Miran N., Rasouli-Sadaghiani M. H., Feiziasl V., Sepehr E., Rahmati M. and Mirzaee S. 2021. The performance of Nutrient Index Value (NIV) in evaluation of dry land. Applied Soil Research, 9(1): 57-71.
Mirbolook A., Lakzian A., Rasouli Sadaghiani M., Sepehr E., and Hakimi M. 2020. Fortification of Bread Wheat Using Synthesized Zn-Glycine and Zn-Alanine Chelates in Comparison with ZnSO4 in a Calcareous Soil. Communications in Soil Science and Plant Analysis, 51 (8):1048-1064.
Mondal M., Biswas B., Garai S., Sarkar S., Banerjee H., Brahmachari K., Bandyopadhyay P.K., Maitra S., Brestic M., and Skalicky M. 2021. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy, 11 ­(3):448.
Nelson Da., and Sommers L.E. 1983. Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9:539-579.
Novoa R., and Loomis R. 1981. Nitrogen and plant production. Plant and soil, 58 (1):177-204.
Palangi S. Bahmani O. Atlasi-pak V. 2020. Comparison of different biochar and fertilizer levels on yield and yield components of wheat and water use efficiency. Applied Soil Research, 8(3): 160-171
Prasad A.S. 2013. Discovery of human zinc deficiency: its impact on human health and disease. Advances in nutrition, 4 (2):176-190.
Safikhan S., Chaichi M.R., Khoshbakht K., Amini A., and Motesharezadeh B. 2018. Application of nanomaterial graphene oxide on biochemical traits of milk thistle (Silybum marianum L.) under salinity stress. Australian Journal of Crop Science, 12 (6):931-936.
Su L-X., Ma X-L., Zhao K-K., Shen C-L., Lou Q., Yin D-M., and Shan C-X. 2018. Carbon nanodots for enhancing the stress resistance of peanut plants. Acs Omega, 3­ (12):17770-17777.
Svennerstam H., Ganeteg U., and Näsholm T. 2008. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytologist, 180 (3):620-630.
Tammina S.K., Wan Y., Li Y., and Yang Y. 2020. Synthesis of N, Zn-doped carbon dots for the detection of Fe3+ ions and bactericidal activity against Escherichia coli and Staphylococcus aureus. Journal of Photochemistry and Photobiology B: Biology, 202:111734.
Wang B-C., Wang H-W., Chang J-C., Tso H-C., and Chou Y-M. 2001. More spherical large fullerenes and multi-layer fullerene cages. Journal of Molecular Structure: THEOCHEM, 540 (1-3):171-176.
Wang H., Li H., Zhang M., Song Y., Huang J., Huang H., Shao M., Liu Y., and Kang Z. 2018. Carbon dots enhance the nitrogen fixation activity of Azotobacter Chroococcum. ACS applied materials & interfaces, 10 (19):16308-16314.
Wang X., Feng Y., Dong P., and Huang J. 2019. A mini review on carbon quantum dots: preparation, properties, and electrocatalytic application. Frontiers in Chemistry, 7:671.
Yao K., Lv X., Zheng G., Chen Z., Jiang Y., Zhu X., Wang Z., and Cai Z. 2018. Effects of carbon quantum dots on aquatic environments: comparison of toxicity to organisms at different trophic levels. Environmental science & technology, 52 (24):14445-14451.
Yuvaraj M., and Subramanian K.S. 2021. Carbon sphere-zinc sulphate nanohybrids for smart delivery of zinc in rice (Oryza sativa L). Scientific Reports, 11­ (1):1-13.
Zhang M., Hu L., Wang H., Song Y., Liu Y., Li H., Shao M., Huang H., and Kang Z. 2018. One-step hydrothermal synthesis of chiral carbon dots and their effects on mung bean plant growth. Nanoscale, 10 (26):12734-12742.
Zhao A., Yang S., Wang B., and Tian X. 2019. Effects of ZnSO4 and Zn‐EDTA applied by broadcasting or by banding on soil Zn fractions and Zn uptake by wheat (Triticum aestivum L.) under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 182 (2):307-317.