توزیع مکانی نیتروژن آلی خاک در بسترهای خشک‌شده دریاچه ارومیه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم خاک، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران.

2 دانشگاه ارومیه

3 گروه مهندسی مرتع و آبخیزداری، دانشگاه ارومیه، ارومیه، ایران

4 عضو هیات علمی گروه مهندسی علوم خاک دانشگاه ارومیه

چکیده

بحران خشکی دریاچه‌ ارومیه منجر به پیدایش بسترهای خشک‌شده و حساس به فرسایش بادی شده است. از این‌رو، ایجاد و تسریع در احیای طبیعی و مصنوعی پوشش گیاهی برای تثبیت کانون‌های ریزگرد بسترهای خشک‌شده دریاچه ارومیه ضروری می‌باشد. از این‌رو، پژوهش حاضر با هدف اندازه‌گیری و تهیه نقشه توزیع مکانی محتوای نیتروژن آلی کل بسترهای خشک‌شده‌ دریاچه‌‌ ارومیه به‌عنوان یکی از عناصر ضروری در احیای پوشش گیاهی بر مبنای نمونه‌برداری میدانی برنامه‌ریزی شد. برای انجام پژوهش حاضر، 192 نمونه خاک از تمام بسترهای دریاچه ارومیه در تابستان 1399 برداشت شد. سپس نتیروژن آلی کل به‌عنوان ویژگی‌ مهم خاک نمونه‌ها اندازه‌گیری شد. سپس با استفاده از روش کریجینگ معمولی مقادیر نتیروژن در مکان‌های بدون نمونه‌برداری از طریق مقادیر نقاط نمونه‌برداری‌شده میان‌یابی و نقشه آن‌تهیه شد. نتایج پژوهش حاضر نشان داد که حداقل، حداکثر و میانگین مقادیر نیتروژن آلی کل در بسترهای خشک‌شده دریاچه ارومیه به‌ترتیب 010/0، 297/0 و 143/0 درصد بود. غالب محتوای درصد نیتروژن کل حاشیه‌های دریاچه ارومیه کم (117/0 تا 153/0 درصد) و بسیار ناچیز بود که در قسمت‌های شمال، شمال غربی، غرب، شرق و به‌ویژه جنوب شرقی دریاچه ارومیه مشاهده شد. با این حال، بیش‌ترین مقدار درصد نیتروژن در بخش های محدودی از جنوب تا جنوب‌غربی دریاچه ارومیه و به میزان 189/0 الی 297/0درصد بود. بر اساس یافته‌های پژوهش حاضر، اجرای اقدامات مدیریتی و فنی در راستای بهبود محتوای نیتروژن بخش وسیعی از بسترهای خشک‌شده و اراضی بایر پیرامون دریاچه ارومیه برای دستیابی به احیای موفقیت‌آمیز پوشش گیاهی ضروری می‌باشد. هرچند، اندازه‌گیری و تهیه نقشه توزیع مکانی سایر مؤلفه‌های خاک نیز برای پژوهش‌های آتی پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Spatial Distribution of Soil Organic Nitrogen in the Dried-up Beds of Lake Urmia

نویسندگان [English]

  • saman Jalalzadeh 1
  • MirHassan Rasouli-Sadaghiani 2
  • Hossein Kheirfam 3
  • Habib Khodaverdiloo 2
  • Farrokh Asadzadeh 4
1 Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
2 Dept of Soil Sci. Urmia Uni
3 Assistant Professor, Department of Range and Watershed Engeneering, Urmia University, Urmia, Iran
4 Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
چکیده [English]

The drought crisis of Urmia Lake has led to the emergence of dried-up and wind-erosion-prone beds. Therefore, it is necessary to create and accelerate the natural and artificial revitalization of vegetation to stabilize the dried-up beds of Urmia Lake. Hence, this study was planned to measure and prepare the spatial distribution map of the organic nitrogen content of the dried-up beds of Urmia Lake based on field sampling as one of the essential nutrients for the revitalization of vegetation. To this end, 192 soil samples were taken from all dried-up beds of Urmia Lake during the Summer of 2020. We then measured the organic nitrogen content of the soil samples. Then, using the ordinary Kriging method, the content of nitrogen in non-sampled beds was estimated through the values of sampled points, and its spatial variability map was prepared. The minimum, maximum, and average nitrogen content in the dried-up beds of Urmia Lake was 0.010, 0.297, and 0.143%, respectively. The nitrogen content was low (0.117 to 0.153%), and very insignificant in most of the dried-up beds and margins of Lake Urmia, which was observed in the north, northwest, west, east and especially southeast parts of the lake. Whereas, the highest nitrogen percentage was in limited parts from the south to the southwest of Lake Urmia and was 0.189 to 0.297. Based on the findings, the implementation of managerial and technical measures in order to improve the nitrogen content of a large part of the dried beds and barren lands around Lake Urmia is necessary to achieve a successful revitalization of vegetation. However, measuring and preparing the spatial distribution map of other soil components is also suggested for future research.

کلیدواژه‌ها [English]

  • Geostatistics
  • Kriging
  • Land reclamation
  • New-born ecosystems
  • Soil properties
Aasfar A., Bargaz A., Yaakoubi K., Hilali A., Bennis I., Zeroual Y. and Meftah Kadmiri I. 2021. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Frontiers in Microbiology12: 628379.
AbdelRahman M.A., Zakarya Y.M., Metwaly M.M. and Koubouris G. 2021. Deciphering soil spatial variability through geostatistics and interpolation techniques. Sustainability, 13(1), 194.
Abdpour A., Heidari Sareban V. and Torabi N. 2016. Investigating economic and social factors influencing farmers' interest in accepting organic garlic cultivation in Hamadan Province. Journal of Research and Rural Planning, 5(1): 33-48 (In Persian)
Ahmady-Birgani H., Agahi E., Ahmadi S.J., Erfanian M. 2018. Sediment source fingerprinting of the Lake Urmia sand dunes. Scientific Reports, 8(1): 206.
Cong H., Feng L., Yonghong X., Zhengmiao D., Zhiyong H. and Xu L. 2019. Spatial distribution and stoichiometry of soil carbon, nitrogen and phosphorus along an elevation gradient in a wetland in China. European Journal of Soil Science, 70: 1128–1140.
Cui Y., Fang L., Guo X., Han F., Ju W., Ye L., Wang X., Tan W. and Zhang X. 2019. Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Science of the Total Environment, 648: 388-397.
Danesh-Yazdi M. and Ataie-Ashtiani B. 2019. Lake Urmia crisis and restoration plan: Planning without appropriate data and model is gambling. Journal of Hydrology, 576: 639-651.
Esmaeilion F., Ahmhenadi A., Hoseinzadeh S., Aliehyaei M., Makkeh S.A. and Astiaso Garcia D. 2021. Renewable energy desalination; a sustainable approach for water scarcity in‎ arid lands. International Journal of Sustainable Engineering, 14(6): 1916-1942.
Fernandez D.P., Neff J.C. and Reynolds R.L. 2008. Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA. Journal of Arid Environments, 72(5): 777-791.
Jeddi K. and Chaieb M. 2010. Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia. Flora-Morphology, Distribution, Functional Ecology of Plants, 205(3): 184-189.
Hadas A., Kautsky L., Mustafa G. and Kara E.E. 2004. Rates of decomposition of plant residues and vailable nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biology and Biochemistry, 36: 255–266.
Hagmann D.F., Goodey N.M., Mathieu C., Evans J., Aronson M.F.J., Gallagher F. and Krumins J.A. 2015. Effect of metal contamination on microbial enzymatic activity in soil. Soil Biology, 91: 291–297.
Hamdi H., Hechmi S., Khelil M.N., Zoghlami I.R., Benzarti S., Mokni-Tlili S., Hassen A. and Jedidi N. 2019. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. Catena, 172: 11-20.
Hernandez T., Moral R., Espinosa A.P., Caselles, J.M., Murcia M.D. and Garcia C. 2002. Nitrogen mineralization potential in calcareous soils amended with sewage sludge. Bioreesource Technology, 83: 213-219.
Jaiver D., Sanchez T. Gustavo, A., Ligarreto M. and Fabi R.L. 2011. Spatial variability of soil chemical properties and its effect on crop yield a case study in maize (Zea mays L.) on the Bogota plateau. Journal of Agronomia Colombiana, 29: 265- 274.
Jiaxin L., Yan L., Yiming Z., Sijie T., Xuechen Z., Ying Z., Wei Z., Bingnian Z., Zhaohui W., Xucheng Z., Ziyan L. and Kazem Z. 2022. The spatial and temporal distribution of nitrogen flow in the agricultural system and green development assessment of the Yellow River Basin. Agricultural Water Management, 263: 107425.
Karamina H. and Fikrinda W., 2020. Soil amendment impact to soil organic matter and physical properties on the three soil types after second corn cultivation. AIMS Agriculture and Food, 5(1): 150-169.
Kheirfam H. and Asadzadeh F. 2020. Stabilizing sand from dried-up lakebeds against wind erosion by accelerating biological soil crust development. European Journal of Soil Biology, 98: 103189.
Kheirfam H., Sadeghi S.H.R. and Zarei Darki B. 2020. Soil conservation in an abandoned agricultural rain-fed land through inoculation of cyanobacteria. Catena, 187: 104341.
Kheirfam H., Sadeghi S.H.R., Homaee M. and Zarei Darki B. 2017. Quality improvement of an erosion-prone soil through microbial enrichment. Soil and Tillage Research, 165: 230-238.
Kheirfam H. and Roohi M. 2020. Accelerating the formation of biological soil crusts in the newly dried-up lakebeds using the inoculation-based technique. Science of the Total Environment, 76: 136036.
Kjeldahl J. 1883. A new method for the determination of nitrogen in organic matter. Zeitschrift für Analytische Chemie, 22: 366-382.
Li Z., Tian D., Wang B., Wang J., Wang S., Chen H.Y., Xu X., Wang C., He N. and Niu S. 2019. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology, 25(3): 1078-1088.
Liu C.W., Sung Y., Chen B.C. and Lai H.Y. 2014. Effects of nitrogen fertilizers on the growth and nitrate content of lettuce (Lactuca sativa L.). International Journal of Environmental Research and Public Health, 11(4): 4427-4440.
Liu Y., Lv J., Zhang B. and Bi J. 2013. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Science of the Total Environment, 450: 108-119.
Oliver M.A. and Webster R. 2014. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113: 56-69.
Qing Q., Dongjie Z., Mingye Z., Shouzheng T., Wuehong W. and Yu A. 2021. Spatial distribution of soil organic carbon and total nitrogen in disturbed Carex tussock wetland. Ecological Indicators, 120: 106930.
Román J.R., Roncero‐Ramos B., Chamizo S., Rodríguez‐Caballero E. and Cantón Y. 2018. Restoring soil functions by means of cyanobacteria inoculation: importance of soil conditions and species selection. Land Degradation & Development, 29(9): 3184-3193.
Shi P. and Schulin R. 2018. Erosion-induced losses of carbon, nitrogen, phosphorus and heavy metals from agricultural soils of contrasting organic matter management. Science of the Total Environment, 618: 210-218.
Shuai W., Kabindra A., Qiubing Wa., Xinxin J. and Hongdan L. 2018. Role of environmental variables in the spatial distribution of soil carbon (C), nitrogen (N), and C:N ratio from the northeastern coastal agroecosystems in China. Ecological Indicators, 84: 263–272.
Song X., Zhang J., Peng C. and Li D. 2021. Replacing nitrogen fertilizer with nitrogen-fixing cyanobacteria reduced nitrogen leaching in red soil paddy fields. Agriculture, Ecosystems & Environment312: 107320.
Stutter M.I., Deeks L.K. and Billett. M.F. 2004. Spatial variability in soil ion exchange chemistry in a granitic upland catchment. Soil Science Society of America Journal, 68: 1304–1314.
Torres-Cruz T.J., Howell A.J., Reibold R.H., McHugh T.A., Eickhoff M.A. and Reed S.C. 2018. Species-specific nitrogenase activity in lichen-dominated biological soil crusts from the Colorado Plateau, USA. Plant and Soil, 429(1): 113-125.
Visser S., Keesstra S., Maas G. and De Cleen M. 2019. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability, 11(23): 6792.
Wang D.D., Shi X.Z., Lu X.X., Wang H.J., Yu D.S., Sun, W.X. and Zhao Y.C. 2010. Response of soil organic carbon spatial variability to the expansion of scale in the uplands of Northeast China. Geoderma, 154: 302–310.
Wang Y., Zhang X. and Huang C. 2009. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150: 141–149.
Webster R. and Oliver M.A. 2007. Geostatistics for environmental scientists. John Wiley & Sons.
Xiuying Y., Dandan Y., Jingtai L., Yao L., Yufeng S., Siying X. and Zhaoqing L. 2022. Spatial Distribution of Soil Organic Carbon and Total Nitrogen in a Ramsar Wetland, Dafeng Milu National Nature Reserve. Water, 14: 197.
Zeinoddini M., Tofighi M.A. and Vafaee F. 2009. Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. Journal of Great Lakes Research, 35: 13-22.
Zingore S., Mafongoya P., Nyamugafata P. and Giller K.E. 2003. Nitrogen mineralization and maize yields following application of tree prunings to a sandy soil in Zimbabwe. Agroforestry Systems, 57: 199–211.